EcoNOMICS 41: HANDOUT 4 KYLE WOODWARD

This is a draft; please send me corrections and/or suggestions.

Convergence of the sample mean

Suppose that (X;)Y, are a sequence of i.i.d. random variables! representing the outcomes from some
experiment repeated N times. We have discussed properties of the sample mean,

1 X
X:N;Xi.

In particular, E[X] = E[X], and Var(X) = & Var(X). A related result — the weak law of large numbers
(WLOLN) — says that as N grows large, P(|X —E[X]| > ) — 0 for all € > 0. Taken together, these results
say that the more observations we make, the closer the sample mean should be to the true mean. We will
extend this logic slightly for an example.

>N+1

Corollary: let Xy and X x11 be the sample means of (X;)N.; and (X respectively. Then as N — 400,

VCL’I“(YN_H — YN) — 0.

Proof: this corollary says that not only are sample means coming arbitrarily close to the population mean,
they are also tending arbitrarily close to one another (or rather, arbitrarily close to the one following). This
is fairly intuitive: if things are converging to a particular point, then the distance between two consecutive
observations should be shrinking. A formal proof is a matter of applying what we know about independent
random variables.
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Since Var(X) is fixed, as N — 400 the right-hand multiple will go to 0, so the variance of the difference will
go to 0.

]

I'When the sequence (XZ>fV: , is i.i.d., we generally drop the subscript and think of each being distributed identically to some
other random variable X. This allows us to avoid having to justify “which X; we are talking about.”
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An interesting consequence here is that not only does the variance of the difference go to 0, but it does so
quickly, on order N2. That means that with 10 observations, the variance of the difference of sample means
will be only 1% of the variance of the underlying random variable! This is because not only is the variance
of an individual sample mean decreasing, but also because an extra observation will have so little effect on
the sample mean, since it is downweighted by ﬁ

In section, I sampled the class to determine how long people sleep on a normal school night?. We collected
the following data:

X X X3 Xy Xj X X7 X3 Xo X10
X, | 7 7 4 6 5 6 8 7 5 5
Xy|7 7 6 6 2| ¥ 2 3 5 6
7 7 6 6 5.8 | 5.833 6.143 6.25 6.111 6
Xy —Xn_1]| — 0O -1 0 -0.2]0.033 0.310 0.107 -0.139 -0.111

We can read what we want into this data — this speaks to the question of when, precisely, is N large? —
but we can see that with a low number of observations the difference in sample means is swinging wildly
about, while with a larger number the difference in sample means is coming closer and closer to 0.

If people send me the data points from the 1:00pm section, I will fill in a section on Chebyshev’s inequality
here.

Estimation potpourri

You have two [possibly-biased] coins. The first lands heads-up with probability py, while the second lands
heads-up with probability po. You run the following experiment: flip the first coin; if it lands heads-up, flip
the second coin. Let Hi and Hs be two random variables; Hi = 1 when the first coin lands heads-up and
Hy, = 0 otherwise; Hy = 1 when the second coin lands heads-up and Hs = 0 otherwise (including if the
second coin is not flipped).

(a) What is the joint PMF of Hy and Hy?

(b) What are the marginal PMFs of Hy and H2?

(c) What is the correlation between Hy and Ha, pm, m, ¢

(d) Let X represent the number of heads obtained in the experiment. What is the PMF of X ?

(e) You compute X; over 10 experiments; you find

X Xo X3 Xy X5 Xg X7 Xz X9 Xy
2 0 0 1 0 1 2 1 0 1

What is the mazimum-likelihood estimate for (p1,p2)?

(f) Suppose p1 = g and py = % Use facts about linear combinations of random variables (Hy and Hy) to

compute E[X] and Var(X).

(g) You run this experiment 7 times. Use Chebyshev’s inequality to place an upper bound on P(X < %)

2Several people cheated and tried to give ranges; tough cookies.
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Continuous random variables

Up until this point we have been dealing with discrete random variables; these are good for addressing
whether or not something happens, what kind of thing happens, how many times it happens, etc. This
concept will only capture so many features of the world. Consider, for example, the number of gallons of
water you use daily, as an Angeleno: it could be 100 gallons or it could be 110 gallons. It could also be
105.1 gallons 105.11 gallons, 105.111 gallons, etc. The crux is this: the amount of water you use could be
any among a continuous set of values; a discrete random variable cannot capture this®!

There is a slight hiccup, though. With discrete random variables, any outcome may happen with a strictly
positive probability (hence, probability mass). But with the infinite outcomes a continuous random variable
may take?, if each occurred with positive probability we would certainly have an overall probability greater
than 1; an [uncountably] infinite quantity of positive numbers must sum to infinity. So instead of speaking
of probability mass, we speak of probability density.

The analogy that I like to use is this: imagine a brick. This brick has a definite mass. If we take a small

portion of this brick, it also has mass. However, once we take an infinitesimally small portion of the brick,

ﬁ

-
|

it has no mass. That is, since it has no size, it contains nothing and therefore has no mass. However, it still

3 Although it could say you use between 108 and 109 gallons of water, between 109 and 110 gallons of water, etc.
4The math is slightly more nuanced than this, but this is good enough for government work.
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has a density! In fact, to determine the overall mass of the brick, we can integrate over the densities of each
infinitesimal slice. That is, since density is mass per unit volume, if we integrate over the entire volume we
will get the mass back.

A continuous random variable functions in a similar way: each individual outcome (analogous to the in-
finitesimal slice of the brick) has zero probability mass, but it still has a probability density. When we
integrate over the probability density, we get back the probability mass that we are used to dealing with.
This motivates the fact that rather than probability mass functions (PMFSs), we now deal with probability
density functions, or PDFs.

If the PDF of a random variable X is fx, we have the following:
b
P@ng@:/fﬂmm.

PDF's have properties that more or less align with the properties we learned about PMFs:
° fX (x) Z 0,
¢ fSupport(X) fx(l‘)d$ =1

In particular, many of the things we did before with PMFs may be done with PDFs, substituting the
summation (3) with integration ([).

Question: the PDF of X is fx(x) = ax, and X has support [0,1]. What is a?
Question: the PDF of X is fx(x) = a(k + z)(k — ), (a > 0) and X has support [—B, B].
(a) What values can B take?

(b) What is a as a function of B and k?
Henceforth, assume B = k.

(¢c) What is a?
(d) What is P(X < £)?

(e) What is P(—£ < X < )2
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