
Economics 201c: week 1 Kyle Woodward

This is a draft; email me with comments, typos, clarifications, etc.

An auction with finite types

Let’s consider the simplest case of an auction with finite types: there are two players i ∈ {1, 2} with types
θi in Θ = {1, β}. The probability that a player is of the low type is p (this is in contrast to Riley’s notation,
where the probability that a player is of the high type is p; we’ll work to make this more consistent as the
quarter goes on). If bidders tie, the object is to be allocated by a fair coin toss. What are bidding strategies
in a symmetric Bayesian Nash equilibrium?

Since we have two types in the system, we’ll consider them each separately. To start, consider the equilibrium
strategy of the low-type bidder; suppose bidders of type 1 play a pure strategy and bid b1.

• Suppose b1 > 1. Then each low-type bidder’s expected payoff is

Vi(1) =
(p

2
+ (1− p)Gβ (b1)

)
(1− b1)

But since 1 − b1 < 0, this expectation is negative! The bidder is better off bidding 1 and losing for
sure, but incurring no cost.

• Suppose b1 < 1. Then each low-type bidder’s expected payoff is

Vi(1) =
(p

2
+ (1− p)Gβ (b1)

)
(1− b1)

where Gβ is the CDF of the equilibrium bid strategy of the high-type bidder (we will later see that
this term should vanish). Now let ε > 0; suppose that the low-type bidder deviates and bids 1 + ε.
Her expected payoff is now

V̂ εi (1) = (p+ (1− p)Gβ (b1 + ε)) (1− b1 − ε)

That is, by increasing the bid slightly the low-type bidder now beats the other low-type bidder for sure
and possibly beats a high-type bidder a little more often.

Although the payoff from winning has shrunk, the probability of winning has increased dramatically,
by at least p

2 . It is clear that we can choose ε small enough that such a deviation is profitable in
expectation (let ε→ 0 and notice that there is a discontinuity in the expected payoff at the limit). So
b1 < 1 cannot be a pure strategy equilibrium.

• Suppose b1 = 1. Then each low-type bidder’s expected payoff is

Vi(1) =
(p

2
+ (1− p)Gβ (b1)

)
(1− b1) = 0

Now suppose the bidder deviates to b′ > 1; as above, this will result in a negative expected utility. If
the bidder deviates to b′ < 1, she loses for sure and again obtains 0 expected utility. So b1 = 1 is the
best she can do and may constitute the low type’s strategy in Bayesian Nash equilibrium.

Can we rule out a mixed strategy in equilbrium for the low-type player? Let G1 be the CDF of a mixed
strategy for a bidder of type 1. Recall that to play a mixed strategy, an agent must be indifferent across
[almost] all elements in the support of the mixture; let b represent the lower bound of the support of the
mixture, and b the upper. Two cases arise:
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• G1(b) = 0. Assume for now that the high-type bidders will bid at least as much as the low-type
bidders (and, if they randomize, their support will be weakly higher) — we will prove this later. Then
by bidding b an agent has 0 probability of winning the object; hence the expected utility from bidding
this amount is 0. If the low-type agent is to be indifferent among all items in the support of the
mixture, the expected payoff from any other bid in the support must also be 0. The only other bid at
which the expectation is 0 is b1 = 1, so the support will consist of two items, {b, 1}. But since we have
assumed G1(b) = 0, this is equivalent to bidding 1 for sure; this is a contradiction of the assumption
that the agent is mixing.

• G1(b) = g > 0. Again assume that high-type bidders will weakly outbid low-type bidders. Then the
expected payoff from bidding b is

1

2
(pG1 (b) + (1− p)Gβ (b)) (1− b)

However, for ε > 0 sufficiently small the agent may bid b+ ε and obtain an expected payoff of

(pG1 (b+ ε) + (1− p)Gβ (b+ ε)) (1− b− ε)

As ε → 0 this quantity becomes larger than the expected payoff within the mixture, so the agent is
better off by deviating to a pure strategy of b+ ε. Hence this cannot be an equilibrium mixture.

Therefore, in equilibrium the low-type bidder can only bid 1. What now will a high-type bidder do? We
establish a few guiding principles prior to developing the particular bidding strategy.

Principle i: high-type bidders cannot play a pure strategy.

Suppose high-type bidders play a pure strategy bβ in equilibrium. There are two cases:

• Let bβ ≥ β. Then expected utility is weakly negative. By bidding β−ε for some ε > 0, the bidder
is sacrificing win probability but gaining payoff conditional on winning. Thus bidding bβ ≥ β
cannot occur in a pure-strategy equilibrium.

• Let bβ < β; suppose that bβ > b1 (this assumption is innocuous). Expected utility is now

Vi(β) =

(
p+

1

2
(1− p)

)
(β − bβ)

However, by deviating up by some small ε > 0 the player can obtain

V̂i(β) = β − bβ − ε

Clearly, for ε small enough this quantity is larger than that expected from bidding bβ ; so bidding
bβ cannot occur in a pure-strategy equilibrium.

Thus the high-type player must played a mixed strategy in equilibrium.

Principle ii: there cannot be a mass point in the high type’s mixture at her valuation β.

Since players must be indifferent across their mixture and expected utility upon bidding their valuation
is 0, if there is a mass point at β the expected utility from any bid in the distribution must be 0. This
cannot be part of an equilibrium, as shown above.

Principle iii: there can be no mass points in the high type’s mixture.
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We assume that the high type’s distribution does not extend beyond their valuation β; technically this
is another principle, but it follows from the first above. Now suppose there is a mass point b > 1 in
the CDF Gβ . Given some ε > 0 define a new CDF H so that

Hε(x; b) =


G(x) if x < b

G(x)−G(b) + limy→bG(y) if b ≤ x < b+ ε

G(x) if b+ ε ≤ x

Essentially, Hε represents a distribution in which the mass point in G has been “shifted rightward”
by ε. Importantly, the probability density functions are identical except at b and b + ε. For ease of
notation, for a CDF F let

−→
F (x) =

1

2

(
F (x) + lim

t→x
F (t)

)
Essentially,

−→
F (x) captures the probability of winning given a bid x, accounting properly for the prob-

ability of tying.

We can represent expected utility in each bid distribution as

V Gi (β) =

∫ b

b

(
p+ (1− p)

−→
G (x)

)
(β − x)G′(x)dx

+
(
p+ (1− p)

−→
G (b)

)
PrG(x = b)(β − b)

+

∫ b+ε

b

(
p+ (1− p)

−→
G (x)

)
(β − x)G′(x)dx

+
(
p+ (1− p)

−→
G (b+ ε)

)
PrG(x = b+ ε)(β − b− ε)

+

∫ b

b+ε

(
p+ (1− p)

−→
G (x)

)
(β − x)G′(x)dx

V Hi (β) =

∫ b

b

(
p+ (1− p)

−→
G (x)

)
(β − x)H ′(x)dx

+
(
p+ (1− p)

−→
G (b)

)
PrH(x = b)(β − b)

+

∫ b+ε

b

(
p+ (1− p)

−→
G (x)

)
(β − x)H ′(x)dx

+
(
p+ (1− p)

−→
G (b+ ε)

)
PrH(x = b+ ε)(β − b− ε)

+

∫ b

b+ε

(
p+ (1− p)

−→
G (x)

)
(β − x)H ′(x)dx

We now look at the difference between expected payoffs. Fortunately, most terms cancel or are 0, so
we are left with

V Hi (β)−V Gi (β) =
(
p+ (1− p)

−→
G (b+ ε)

)
PrH(x = b+ε)(β−b−ε)−

(
p+ (1− p)

−→
G (b)

)
PrG(x = b)(β−b)

Notice that PrG(x = b) = PrH(x = b+ ε); since we are concerned only with the sign of the difference,
these terms may be removed. We are then left with

V Hi (β)− V Gi (β) = −pε+ (1− p)
(−→
G (b+ ε) (β − b− ε)−

−→
G (b) (β − b)

)
Letting ε→ 0, we find V Hi (β)−V Gi (β)→ 1

2 (1− p) PrG(x = b)(β− b) > 0. That is, for ε small enough
shifting the CDF rightward is profitable. Thus there cannot be a mass point above the low type’s
equilibrium bid (more generally: the two high-type bidders cannot have a common mass point; hence
by the symmetry in this example there can be no mass points).
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Principle iv: there are no “flat” ranges in the mixture distribution.

Suppose that there is a range [h`, hu] over which G is constant (note that we can WLOG assume this
range is closed since we have already demonstrated that G has no mass points). For some ε` ≥ 0,
εu ≥ 0 the densities G′(h` − ε`) and G′(hu + εu) are positive; moreover, ε` and εu may be arbitrarily
small. Since agents must be indifferent over their mixture, we need

(p+ (1− p)G (h` − ε`)) (β − h` + ε`) = (p+ (1− p)G (hu + εu)) (β − hu − εu)

Letting ε`, εu tend toward 0, we retain the equivalence

(p+ (1− p)G (h`)) (β − h`) = (p+ (1− p)G (hu)) (β − hu)

Or h` = hu, a contradiction. Thus there are no flat ranges in G.

Principle v: the lower bound of the support of the high type’s mixture must coincide with the strategy of a low-type
bidder.

Here, we will consider the low-type bidder as playing a pure strategy; the discussion will generalize to
the case where the low-type bidder mixes (which will not happen, but is necessary to investigate to
maintain logical consistency with our previous discussion of the low type’s strategy) if we consider the
upper bound of the mixture rather than the bid in the pure strategy equilibrium. As this is directly
analogous and introduces headaches in notation we’ll ignore it here.

Suppose the high-type players are mixing over some support [b, b] with b > 1. Recalling that players
must be indifferent among all elements in the support of their mixtures, we see that expected utility
for the high-type player is

p (β − b)

Let ε > 0 be such that b− ε > 1. Then the expected utility from bidding b− ε is

p (β − b+ ε) > p (β − b)

So deviation is preferred.

Now suppose that b < 1. Expected utility from bidding b < 1 is 0, so this must be the expected utility
across the support of the mixture; but the only points at which this is possible are b and β. This
directly implies a mass point and a flat range in the distribution, both contradictions. So this cannot
be an equilibrium.

To recap: a high-type bidder must be playing a mixed strategy with continuous support on [1, b] for some
b ≤ β. The CDF representing the mixture is continuous and, if differentiable, has a strictly positive first
derivative on its interior.

How can we uncover this CDF? We need to construct indifference conditions for the high-type bidder; from
above, we know that the low type’s bid of 1 will be the lower bound of the mixture. Näıvely, it seems that
utility from bidding 1 should be

1

2
p(β − 1)

That is, the low-type bidder is beaten half of the time and the high-type bidder is never beaten (recalling
that the bidding CDFs have no mass points). However, consider an ε deviation; expected utility becomes

(1 + (1− p)G(1 + ε)) (β − 1− ε)

Letting ε→ 0, we see that expected utility goes to

p(β − 1)
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So long as 1 is bid with 0 probability, we will run into no real mathematical issues if we assume this as
our indifference condition (if we assume the näıve indifference condition we will obtain a mass point at 1,
a contradiction). We use this to construct an indifference equality and subsequently verify that there is 0
probability on bidding 1.

For indifference, we have
p(β − 1) = (p+ (1− p)G(b)) (β − b)

By algebraic rearrangement, this gives us

G(b) =

(
p

1− p

)(
b− 1

β − b

)
This CDF satisfies the properties of non-flatness, no mass points, and a lower bound at 1. To obtain its
upper bound, we set G(b) = 1; this gives us

b = (1− p)β + p

With β > 1, b < β satisfying our remaining restriction. Thus we are all good.

A final statement of Bayesian Nash equilibrium is that bidders of type 1 bid 1 for sure, while bidders of type
β bid according to the mixed strategy G(b) = ( p

1−p )( b−1β−b ).

In general, we don’t need to go through all of this complexity to answer these questions; it is sufficient to
set up the lower-bound indifference condition and then directly solve for the distribution. Still it is useful to
have a catalogue of the necessary properties and keep them in mind while working through other questions.

A slight generalization of finite types

There are several ways to generalize auctions with finite types — more players, more types, etc. — but we’re
going to leave the general concepts of the auction the same and change the specification only so that players
may have different high types, θi ∈ {1, βi}, with different probabilities (1− pi).

Most of the arguments for the simpler case hold just as well here: low types will still bid 1, high types must
mix, there should be no flat ranges in the distribution, and high types should have no overlapping mass
points. Näıvely, then, we can setup indifference conditions for the high-type bidders:

p−i (βi − 1) = (p−i + (1− p−i)G−i(b)) (βi − b)

⇐⇒ G−i(b) =

(
p−i

1− p−i

)(
b− 1

βi − b

)

What is the upper bound of the bid distribution for the high-type bidders? Setting G−i(b) = 1, we find

b−i = p−i + (1− p−i)βi

The upper bounds of the mixtures will then match if and only if

p1 + (1− p1)β2 = p2 + (1− p2)β1

⇐⇒ p1 − 1 + (1− p1)β2 = p2 − 1 + (1− p2)β1

⇐⇒ β2
1− p2

=
β1

1− p1

If this holds, we are done.
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What if the upper bounds of the mixtures do not coincide? Suppose that bidder 1’s upper bound b1 lies
above bidder 2’s upper bound b2. The expected payoffs from these actions are(

p2 + (1− p2)G2

(
b2
)) (

β1 − b2
)

= β1 − b2(
p2 + (1− p2)G2

(
b1
)) (

β1 − b1
)

= β1 − b1

But since b1 > b2, the expected payoff from bidding b2 is higher! This contradicts the nature of the mixed
strategy (to be fair, we should be certain to examine this within ε-neighborhoods). How can the strategies
be altered so as to share an upper bound?

Intuitively, we have two options: we can add a mass point to the higher distribution (the one with the higher
upper bound) at the upper bound of the lower distribution. Assuming b1 > b2, this means placing a mass
point in G1 at b2; in particular, we let Ĝ2(b2) = 1. But if bidder 2 is of the high type, she can now win the
auction for sure (making a profit) when bidding b2 + ε for any ε > 0. Her expected payoff from doing so is
β2 − b2 − ε. Now suppose she bids b2; her expected payoff is(

p1 + (1− p1)
−→
G1

(
b2
)) (

β2 − b2
)

As usual, for ε small enough the expected utility from deviating is greater than that from playing the existing
equilibrium strategy. So this cannot be an equilibrium.

What if, instead, we add a mass point to the lower bidder’s mixture at the lower (common) bound of the
support? Without performing the calculations, we’ll appeal to the proof above and existing ε deviation
arguments and state that this cannot be an equilibrium either.

That is to say, given the existing setup, when β2

1−p2 6=
β1

1−p1 there is no pseudo-symmetric Bayesian Nash

equilibrium (pseudo-symmetric is by no means a technical term, it merely reflects the fact that we expect
symmetric behavior from low-type bidders). Is there a way around this? We have the option to rewrite the
tiebreaking rule in a manner similar to how we might address existence issues in Bertrand competition with
differing marginal costs (if this is not familiar to you, consider what the Nash equilibrium would be in a
Bertrand competition game with differing marginal cost structures): in the event of a tie, the object should
be allocated to the bidder with the higher valuation. Note that this makes an assumptions that we paper
over, namely that the seller has the ability to know a bidder’s true valuation — which might make holding
an auction in the first place seem ridiculous — but let’s leave that be for now.

If ties go to the bidder with the higher type, we still cannot support a mass point at the upper bound of
the lower bidder’s distribution (check for yourself why this is the case). However, we are now able to let
high-type bidders play the low-type’s bid with positive probability. So again assume b1 > b2; we add a mass
point for bidder 1 at 1. Bidder 2’s indifference statement is now

(p1 + (1− p1)G1(1)) (β2 − 1) = (p1 + (1− p1)G1(b)) (β2 − b)

This gives us a form for bidder 1’s mixture,

G1(b) =
(p1 + (1− p1)G1(1)) (β2 − 1)− p1 (β2 − b)

(β2 − b) (1− p1)
=
p1(b− 1) + (1− p1)G1(1) (β2 − 1)

(β2 − b) (1− p1)

Bidder 2’s indifference conditions are unchanged. It may seem strange that the bidder with the “higher”
distribution is the bidder with the mass point at the lower bound; but this ignores the truth about the
bidder with the higher distribution: agents’ mixtures are set to keep the opposing player indifferent between
options. So the bidder with the “higher” distribution is the one with the lower overall valuation (here we are
hand-waving prodigiously, but the intuition is solid), net of the opponent’s type distribution. For a simple
example of this, let p1 = p2 = 1

2 , β1 = 2, and β2 = 3. Then bidder 1’s expectation from his lowest possible
bid is 1

2 while bidder 2’s is 1; the upper bound on bidder 2’s distribution must then be 3
2 and the upper

bound on bidder 1’s must be 2 (set up indifference conditions on both ends of the distribution to check this).

May 26, 2011 6



Economics 201c: week 1 Kyle Woodward

Thus even though bidder 1 values the object less, he must be willing to bid more to keep bidder 2 willing to
mix. In this light, it makes sense that the bidder with the higher mixing distribution must put a mass point
at 1.

The only quantity remaining to calculate is G1(1). This we can achieve by setting G1(b2) = 1, or G1(p2 +
(1− p2)β1) = 1. Plugging in, we find

1 =
p1 (p2 + (1− p2)β1 − 1) + (1− p1)G1(1) (β2 − 1)

(β2 − p2 − (1− p2)β1) (1− p1)

⇐⇒ (β2 − p2 − (1− p2)β1) (1− p1) = p1 (1− p2) (β1 − 1) + (1− p1)G1(1) (β2 − 1)

⇐⇒ G1(1) =
(β2 − p2 − (1− p2)β1) (1− p1)− p1 (1− p2) (β1 − 1)

(1− p1) (β2 − 1)

All-pay auctions

All-pay auctions happen precisely as the name would suggest: each agent submits a bid; the high bidder
wins the object up for auction and every agent pays their bid. As an exercise in working through the steps
of solving auction problems, it is useful to solve for the equilibrium bid function in an all-pay auction.

To begin, we need to define the value function. A bidder of type θi will win the object with probability w(θi)
by placing bid b(θi). But where in the standard auction the expected payment is w(θi)b(θi), here the bid is
paid regardless so expected payment is b(θi). The value function is then

V (θi) = θiw (θi)− b (θi)

Taking the derivative, we find
V ′ (θi) = w (θi) + θiw

′ (θi)− b′ (θi)

But from the envelope theorem, we know the latter two terms sum to 0. We can see this by looking at an
agent’s choice over possible type-reports rather than the more abstract value function. Let u(θ; θi) be the
utility that an agent of type θi receives from reporting type θ; this is

u(θ; θi) = θiw(θ)− b(θ)

The agent will choose to report a type which maximizes expected utility, or ∂u
∂θ = 0. We then see

∂u

∂θ
(θ; θi) = θiw

′(θ)− b′(θ) = 0

Since these are precisely the latter two terms in V ′(θi), we can see that they reduce to 0.

We then have V ′(θi) = w(θi). Expressing the value function by integrating up its derivative, we have

V (θi) =

∫ θi

θ0

V ′(θ)dθ

=

∫ θi

θ0

w(θ)dθ

But from our initial definition we also know that V (θi) = θiw(θi)− b(θi). This gives us

θiw (θi)− b (θi) =

∫ θi

θ0

w(θ)dθ
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Rearranging, we may find an explicit form for the [symmetric] equilibrium bid function,

b (θi) = θiw (θi)−
∫ θi

θ0

w(θ)dθ

Generally, we take this at least one step further; integrating by parts, we obtain

b (θi) = θiw (θi)− θw(θ)|θiθ=θ0 +

∫ θi

θ0

θw′(θ)dθ

= θ0w (θ0) +

∫ θi

θ0

θw′(θ)dθ

=

∫ θi

θ0

θw′(θ)dθ (the low type cannot win)

b (θi) =

∫ θi

θ0

θF ′(θ)dθ

where F is the CDF of bidder types. Notice that we crucially assumed that the low type cannot win the
auction. This is sensible if the bid function is strictly increasing and the type distribution is everywhere-
continuous (that is, there are no jumps or probability mass points). We can go ahead and verify this
assumption in the solution,

b′ (θi) = θiF
′ (θi) > 0

So everything is alright.

Solved using revenue equivalence

Can we take this a step further? Recall that in the case of a continuous distribution revenue equivalence
holds as long as allocation is efficient and the low-type buyer incurs no unnecessary costs. If the seller expects
identical revenue across auctions, each bidder should expect to make identical payments across auctions. To
this end, let’s consider an agent’s expected payment in a second-price auction and use this to derive the
equilibrium bid strategy in the all-pay auction.

In the second-price auction, the agent expects to pay the value of the next-highest type if she wins the
auction, and 0 otherwise. Let r(θi) represent the expected payment of a bidder of type θi. We find

r (θi) = Pr (win|θi)E [max θ−i|θ−i < θi]

= w (θi)

∫ θi

θ0

θ

(
w′(θ)

w (θi)

)
dθ

=

∫ θi

θ0

θw′(θ)dθ

r (θi) =

∫ θi

θ0

θF ′(θ)dθ

There is one step left to determine the equilibrium bid in the all-pay auction: we must consider how an
agent’s expected payment relates to what she bids. In the all-pay auction, expected payment is exactly the
bid, so we find

b (θi) = r (θi) =

∫ θi

θ0

θF ′(θ)dθ

This is exactly the result from above! It is not necessarily shorter nor necessarily better to proceed this way,
but we have obtained a useful check of our previous algebra.
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2007 Fall comp, question 3

Lance Armstrong and Floyd Landis agree to an exhibition bike race. Whoever trains hardest will win a prize
they each value at V = 2, but training is expensive: the cost is ct where t ∈ [0, 1] is the level of training
chosen and c ∈ [1, 2] is individual-specific marginal cost. Lance and Floyd each know their own marginal
cost of training and behave as if the other’s marginal cost is uniformly distributed on [1, 2].

(a) Show that, whatever strategy Lance follows, Floyd’s best response is weakly decreasing in his own cost.

Solution: by the revelation principle, we can consider this as a game where Lance and Floyd report
their types and are then told how much to train. If Floyd is of type cF but reports type c, his expected
utility is then

uF (c; cF ) = 2w(c)− cF t(c)

where w(c) is the probability that an agent of type c wins the race. For truthful reporting to be a
dominant strategy, it must be incentive-compatible; that is, an agent of type c must be willing to report
type c. Let c′ > c; we then require

2w(c)− ct(c) ≥ 2w(c′)− ct(c′)
2w(c′)− c′t(c′) ≥ 2w(c)− c′t(c)

By rearranging algebraically we obtain

2 (w (c)− w (c′)) ≥ c (t (c)− t (c′))

2 (w (c′)− w (c)) ≥ c′ (t (c′)− t (c))

These inequalities may be put together,

c′ (t (c)− t (c′)) ≤ c (t (c)− t (c′))

Since we have assumed c′ > c, it follows that t(c) − t(c′) ≤ 0 for all c < c′. Thus t(·), Floyd’s best
response, is decreasing.

(b) Find a symmetric Bayesian Nash equilibrium in smooth, strictly decreasing strategies.

Solution: notice that this situation looks vaguely like an all-pay auction. Either racer’s value function
will look like

Vi(c) = 2w(c)− ct(c)

According to our usual envelope theorem argument, we have

V ′i (c) = −t(c)

Integrating up from initial conditions and equating with our definition of V (·), we have∫ c

2

V ′i (c)dc+ Vi(2) = 2w(c)− ct(c)

Since Vi(2) = 0 — the high-type racer has zero probability of winning — we may rewrite this as∫ c

2

−t(c)dc = 2w(c)− ct(c)

Where should we go from here? We can consider substituting in for t′ by taking first-order conditions
of ui(c; ci) as above, but it seems that it will be just as quick to solve this system directly. By the
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revelation principle, w(c) = 1−F (c); since types are believed to be uniformly distributed on [1, 2], this
gives us w(c) = 2− c. So we have ∫ c

2

−t(c)dc = 4− 2c− ct(c)

Taking the derivative with respect to c, we find

−t(c) = −2− ct′(c)− t(c) =⇒ ct′(c) = −2

It follows that
t(c) = −2 ln c+K

We may determine K by observing that Vi(2) = 0; with w(2) = 0, it must also be that t(2) = 0. So
we have

−2 ln 2 +K = 0 =⇒ K = 2 ln 2

Then the symmetric equilibrium training strategy is

t(c) = 2 ln 2− 2 ln c

The key trick to note in this question is that the value of the high-type racer is 0, rather than the value
of the low-type racer being 0 as in a more standard auction context. This flips most of our equations
(we base calculations from 2 rather than 1) but the general spirit of the math remains the same.

Essential Microeconomics, exercise 10.1.1

Also, 2008 Fall comp question 3.

Batman has just learned that the Joker plans a big caper for tomorrow, but he does not know if the target
of the Joker’s attack will be the Museum of the Tower. Batman can guard one of these targets but not both.
Tomorrow’s outcome depends on the actions of Batman and the Joker and on the weather.

• If Batman guards the wrong target (that is, the target that the Joker does not attack) then the Joker
will succeed regardless of the weather. Batman values this outcome at −4 and the Joker values it as
+4.

• If Batman guards the Museum and the Joker attacks the Museum and the weather is bad, Batman
will catch the Joker. Batman values this outcome at +8 and the Joker values it at −20.

• In every other circumstance the Joker will be foiled but will escape. Batman and the Joker value this
outcome at 0.

Batman must make his choice today, before he knows the weather. The Joker can make his choice tomorrow
when he sees the weather. Neither player sees the action of the other. It is common knowledge that the
probability that the weather will be good is 3

4 and the probability that the weather will be bad is 1
4 .

(a) Depict the Bayesian game in extensive (tree) form.

Solution: TBD.

(b) Explain carefully why there can be no equilibrium in pure strategies.

Solution: this is best handled in cases.
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• Suppose that Batman always guards the Museum; then the Joker will always attack the Tower
and Batman would rather guard the Tower.

• Suppose that Batman always guards the Tower; then the Joker will always attack the Museum
and Batman would rather guard the Museum. Therefore Batman cannot play a pure strategy in
equilibrium.

• Suppose that the Joker plays a the same pure strategy regardless of the state of the weather.
Then just as in the previous two cases Batman will strictly prefer thwarting the Joker to not,
leading the Joker to deviate.

• Suppose that the Joker attacks the Museum (for sure) when the weather is bad; Batman’s expected
payoff from guarding the Museum is at least 1

4 (8) + 3
4 (−4) = −1 while Batman’s expected payoff

from guarding the Tower is no greater than 1
4 (−4) + 3

4 (0) = −1. These payoffs are obtained
assuming that the Joker attackes the Tower (for sure) when the weather is good. Since Batman
is indifferent, he is willing to play a mixed strategy and we run into no contradiction of Batman
playing a pure strategy.

• There is one remaining pure strategy for the Joker: attack the Tower when the weather is bad and
attack the Museum when the weather is good. Then Batman sees probability 3

4 of thwarting the
Joker if he guards the Museum and probability 1

4 of thwarting the Joker if he guards the Tower.
Batman will then strictly prefer guarding the Museum, contradicting the fact that Batman cannot
play a pure strategy in equilibrium.

Since Batman cannot have an equilibrium in pure strategies, there is no pure strategy Nash equilibrium.
However, it is possible that the Joker plays a pure strategy (per state of the world) while Batman mixes1.

(c) Let y be the probability that Batman chooses the Museum. Show that there is a unique y such that
the Joker is indifferent between M and T if the weather is bad, and a second y such that the Joker is
indifferent if the weather is good.

Solution: for the Joker to be indifferent between the Museum and the Tower when the weather is bad
we need

E [uJ (M) |bad] = E [uJ (T ) |bad]

That is,

(−20)yb + (4)(1− yb) = (4)yb + (0)(1− yb)

⇐⇒ yb =
1

7

For the Joker to be indifferent between the Museum and the Tower when the weather is good we need

E [uJ (M) |good] = E [uJ (T ) |good]

That is,

(0)yg + (4)(1− yg) = (4)yg + (0)(1− yg)

⇐⇒ yg =
1

2

(d) Let x be the probability that the Joker chooses M . For each y determined in (c) above, examine the
payoff of Batman and show that there is a unique Bayesian Nash equilibrium of this game.

1This will be ruled out in subsequent discussion.
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Solution: suppose y = yb. Then when the weather is good the Joker will certainly attack the Museum.
For Batman to be indifferent between guarding the Museum and guarding the Tower, we need

E [uB (M)] = E [uB (T )]

Explicitly, this is

(8)

(
1

4

)
x+ (−4)

(
1

4

)
(1− x) = (−4)

(
1

4

)
x+ (−4)

(
3

4

)
⇐⇒ 2x− (1− x) = −x− 3

⇐⇒ x = −1

2

This probability is negative! Essentially, since guarding the Museum is advantageous when the weather
is good and also yields (potentially) a very large payoff when the weather is bad, Batman is very highly
incentivized to guard the Museum.

Now suppose y = yg. Then when the weather is bad the Joker will certainly attack the Tower. Batman’s
indifference conditions have not changed (as compared to those stated above), but the explicit form
has. We now set

(−4)

(
1

4

)
+ (−4)

(
3

4

)
(1− x) = (−4)

(
3

4

)
x

⇐⇒ −1− 3(1− x) = −3x

⇐⇒ x =
2

3

So we have a Bayesian Nash equilibrium in which Batman guards the Museum with probability yg = 1
2

and the Joker attacks the Tower when the weather is bad, and attacks the Museum with probability
x = 2

3 when the weather is good.

Is this equilibrium unique? The only other candidate for equilibrium was described above in part (a):
the Joker attacks the Tower when the weather is good and the Museum when the weather is bad, while
Batman mixes somehow. We have seen yb < yg, so we can handle this concept in two cases. Suppose
y < yg; then the Joker will strictly prefer attacking the Museum when the weather is good. Hence to
obtain the desired result, we require y > yg. But this implies y > yb; when this is the case, the Joker
strictly prefers attacking the Tower when the weather is bad. Thus we cannot find a mixed strategy
for Batman which will induce the Joker to follow the desired contingent strategy. It follows that the
Bayesian Nash equilibrium derived here is unique.

At this equilibrium, Batman’s utility is

E [uB (σB , σJ)] = E [uB (T, σJ)]

= (−4)

(
3

4

)
x

= −3

(
2

3

)
= −2

Poor Batman.
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