
Economics 101: handout 3 Kyle Woodward

Cops and Robbers

Recall the game of cops and robbers from class, shown in Figure 1.

R H
P 2,−2 0, 1
D −1, 3 1, 0

Figure 1: The cops and robbers game from class

Check (easy): show that there is no pure-strategy Nash equilibrium in this game.

Last time, we saw that, together, there must always be an odd number of Nash equilibria and mixed-
strategy Nash equilibria; importantly, this implies that there must always be at least one equilibrium, hence
an equilibrium of some kind must exist. Since there is no pure-strategy Nash equilibrium of this game, we
should look for a mixed-strategy Nash equilibrium.

Mixed-strategy Nash equilibrium

Suppose that the police Patrol with probability p1, and the robbers Rob with probability p2. We know that
in mixed-strategy Nash equilibrium, each side’s randomization must keep the other indifferent between its
two strategies. Since the police’s randomization must keep the robbers indifferent, we have

u2 (p1P + (1− p1)D,R) = u2 (p1P + (1− p1)D,H)

⇐⇒ p1(−2) + (1− p1)(3) = p1(1) + (1− p1)(0)

⇐⇒ 3 = 6p1 ; p1 =
1

2

Similarly, the robbers’ randomization must keep the police indifferent, so we must have

u1 (P, p2R + (1− p2)H) = u1 (D, p2R + (1− p2)H)

⇐⇒ p2(2) + (1− p2)(0) = p2(−1) + (1− p2)(1)

⇐⇒ 4p2 = 1 ; p2 =
1

4

Therefore we have a mixed-strategy Nash equilibrium where the police Patrol with probability p1 = 1/2 and
the robbers Rob with probability p2 = 1/4.

Updating payoffs

We now ask the question, what happens if we punish the robbers more for being caught red-handed? In
particular, let’s change their utility of being caught from −2 to −5. The new game is shown in Figure 2.

R H
P 2,−5 0, 1
D −1, 3 1, 0

Figure 2: The cops and robbers game, modified to punish the robbers more if they get caught

Check (easy): show that there is still no pure-strategy Nash equilibrium in this game.
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Let’s keep the convention that the police Patrol with probability p1 and the robbers Rob with probability
p2. Then we can repeat the above analysis to determine the probabilities which support a mixed-strategy
Nash equilibrium.

u2 (p1P + (1− p1)D,R) = u2 (p1P + (1− p1)D,H)

⇐⇒ p1(−5) + (1− p1)(3) = p1(1) + (1− p1)(0)

⇐⇒ 3 = 9p1 ; p1 =
1

3

u1 (P, p2R + (1− p2)H) = u1 (D, p2R + (1− p2)H)

⇐⇒ p2(2) + (1− p2)(0) = p2(−1) + (1− p2)(1)

⇐⇒ 4p2 = 1 ; p2 =
1

4

In the new mixed-strategy Nash equilibrium, the police Patrol with probability p1 = 1/3 and the robbers
Rob with probability p2 = 1/4.

Implications

Interestingly, by increasing punishment for the robbers we have not changed the probability with which they
Rob, but we have changed the probability with which the police Patrol — although we’ve changed it the
“wrong” way! More on this in a moment.

An outcome that we might be interested in is the probability with which the robbers succeed in their gambit.
For this to be the case, they must Rob while the police stay out and eat Donuts. Since the probability
that the robbers Rob is p2, the probability that the police eat Donuts is 1− p1, and the randomizations are
independent, the probability that the robbers successfully breach the target and make off with the goods is
(p2)(1− p1).

In the first case, this is

p2(1− p1) =
1

4

(
1− 1

2

)
=

1

8

So roughly 12% of the time the robbers will successfully rob. Once we increase punishment, however, this
probability changes to

p2(1− p1) =
1

4

(
1− 1

3

)
=

1

6

So roughly 17% of the time the robbers will successfully rob. In the face of increased punishment, this is
both counterintuitive and really not good.

Intuition

We need to come up with a story explaining what’s going on here, and in the end it comes down to the fact
that we are presuming equilibrium behavior. That is, we are looking for strategies that support equilibrium.
Here are the two facts that lead to the troublesome outcome above:
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• The utility of the police has not been changed. Since it is the robbers’ randomization which keeps the
police indifferent, changing the robbers’ utility will not affect the probability with which they must
Rob in equilibrium. This in itself is a little counterintuitive, but is fairly reasonable once spelled out.

• Suppose that the strategy of the police remains fixed. Since we have increased the punishment for
getting caught, Rob looks much less appealing to the robbers while staying Home does not change.
As they were previously exactly indifferent between the two actions, it must now be the case that
staying Home is strictly better than robbing, so the robbers will surely stay Home. But if the robbers
stay home, the police are happier to eat Donuts; and if the police are eating Donuts, the robbers are
happier to Rob...

This means that in equilibrium the police must make Robbing look more appealing! They will do this
by decreasing the probability with which they patrol.

Consider this story: the government increases penalties for robbery on Monday. Since the robbers were
perfectly indifferent before, now they won’t Rob (yay, society!). On Tuesday, the police see that the robbers
haven’t robbed, so they decide to eat Donuts instead of patrolling. On Wednesday, the robbers see that the
cops have been eating Donuts, so they Rob the target and make off with loot. On Thursday the police see
that the target has been robbed, so they Patrol; the robbers see this, so don’t Rob. On Friday, the police
see that the target hasn’t been robbed again, so they eat Donuts instead...

The only way out of this loop is to find the correct mixed-strategy Nash equilibrium. Here, this means that
robbing must look more appealing than otherwise; since being caught is being punished more strictly, the
only option is for the police to Patrol less often, which means that more successful robberies occur!

This brings into focus an important point: in game theory, we are concerned only with what the model on
paper says. If these results seem counterintuitive and backwards (and the math checks out), it’s a sign that
either the model is ill-specified, or that our intuition is wrong. Not being an expert on the criminal justice
system I’ll withold judgment in this case, but my guess would be that we are not accounting for all of the
important issues in the decision of the police to patrol or eat donuts, or in the decision of crooks to rob or
stay home.

Discounting

It is a fact of life that people are impatient. Of course, people may be impatient to varying degrees and
differently in different situations, but nonetheless anyone can tell you that a payoff today is better than a
payoff tomorrow.1 There are numerous ways of quantifying and codifying this, but the most mathematically
useful2 is the notion of exponential discounting.

Definition

Consider a game where time t passes, t = 0, 1, 2, . . .. An agent has discount
rate δ ∈ (0, 1) if utility u at time t′ is equivalent to utility δt

′
u at time t = 0.

1There are of course some exceptions to this if we continue to equate utility and money: $5000 on December 31 may be
worth less than $5000 on January 1, depending on your tax situation. However, if we consider utility rather than dollars, this
confusion disappears. For now, we will continue to confuse money and utility and put aside little conundra like the previous.

2In particular, this form has the nice property of time-consistent preferences: what looks better today will also look better
tomorrow. There are a handful of other schools of thought regarding how agents should discount future utility, but we will
start with the simplest.
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In particular, utility u one period in the future is worth δu right now. If s′ is also a point in time and t′ > s′,
then utility u at time t′ is equivalent to utility δt

′−s′ at time t = s′.3

This construction allows us to make statements about how agents will act today regarding choices they may
have to make in the future. This is distinct from sequential games, although it is related: in a sequential
game, agents act in turn but we don’t consider more than a small amount of time as passing.4 In games with
discounting, we think of agents as, say, walking away from the game for a little while, then coming back at
a later date. They are still engaged with the game at all points, but the outside world is continuing apace.

Back-and-forth ultimatum game

Let’s generalize the ultimatum game slightly. Agents will split 1 unit of a perfectly-divisible good. Agent
1 will make the first offer x1, then agent 2 can accept or reject. If agent 2 accepts, payoffs are (1 − x1, x1)
immediately; if agent 2 rejects, time passes and then agent 2 can respond with a counteroffer x2. Upon
receipt of this counteroffer, agent 1 can accept or reject; if agent 1 accepts, payoffs are (x2, 1 − x2), and if
agent 1 rejects payoffs are (0, 0). This game is pictured in Figure 3.

10
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x1
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1− x1, x1
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R

2
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2

x2

A

x2, 1− x2

1

R

0, 0

1

1

Figure 3: the twice-repeated ultimatum game, or, ultimatum game with counteroffers

This game clearly has a sequential flavor — one agent is acting, then another responds, etc. — so it is
natural to look for subgame-perfect Nash equilibrium. Working backwards, we can see

(iv) In the last stage, agent 1 receives x2 from Accepting and 0 from Rejecting, therefore she should cer-
tainly Accept any x2 > 0. She is indifferent between Accept and Reject when x2 = 0; for mathematical
niceness we will assume that she Accepts.5 Agent 1’s strategy in this round is then (A).

(iii) In the second-to-last stage, agent 2 knows that agent 1 will Accept any offer. Since he wants to
maximize his own payoff, he will give her the minimum amount possible; as she will accept 0, he will
offer her 0, leading to implied payoffs of (0, 1).

3The discount rate is sometimes referred to as the discount factor. You should probably keep your ears peeled for anything
involving the word “discount.”

4Think about this: if you play rock-paper-scissors and your friend throws first, you don’t need more than a fraction of a
second to pick your move. In this sense, there are different phases to the game — your friend throws, then you throw — but
no “real” time has passed.

5The reason for this is straightforward: suppose that agent 1 Rejects x2 = 0. Agent 2 wants to maximize his payoff in
the previous round, so he should offer the least amount possible. If he offers 0, agent 1 will Reject and so agent 2 will get 0;
however, if he offers ε > 0 agent 1 will accept and he will get 1− ε. Therefore he should offer the smallest possible ε > 0. Since
there is a continuum of numbers available, there is no such number! (for any ε > 0, there is a smaller 0 < ε′ < ε) This means
that he has no optimal response to agent 1’s strategy, and we are up a creek. The way around this is to assume that agent 1
Accepts when x2 = 0, which may as well be the case since she is indifferent between Accepting and Rejecting.
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(ii) In the third-to-last stage, agent 2 knows that if he Accepts he can receive x1 today and that if he
Rejects he can receive 1 tomorrow. Remembering now that agents discount the future, we can see that
1 tomorrow is worth 1δ = δ today; hence his choice is between Accepting and receiving x1 today and
Rejecting and receiving δ tomorrow. His optimal strategy is therefore{

A if x1 ≥ δ,
R otherwise.

Notice that we again have the agent accepting where he is indifferent between accepting and rejecting.
For more on this, see the previous footnote.

(i) In the fourth-to-last stage (the first stage), agent 1 knows that agent 2 will Accept any offer x1 ≥ δ.
We need to consider two contingencies:

– If agent 1 can get agent 2 to Accept, her payoff will be 1 − x1. In this case, she would like to
minimize her offer to player 2 in order to keep more of the spoils for herself. She should therefore
offer agent 2 the minimum amount that will lead to Acceptance, x1 = δ. Her payoff will be 1− δ.

– If agent 1 causes agent 2 to Reject, time will pass and agent 2 will offer her x2 = 0 and she will
Accept. Her payoff in the future is then 0, hence her view of her payoff today is 0δ = 0.

Agent 1’s choice is then between offering x1 = δ and receiving 1 − δ, or offering x1 < δ and receiving
0. Clearly 1− δ > 0, so agent 1 should offer x1 = δ to agent 2.

Thus using subgame perfection we can see that agent 1 will offer x1 = δ in the first period, and agent 2
will accept. Payoffs are then (1 − δ, δ). What is nice about this is that by simply repeating the situation
but reversing the roles of the agents, we have given agent 2 significant bargaining power that simply did not
exist in the one-period ultimatum game. This makes things look a lot more fair.

Question (easy): what happens when agents become more patient (e.g., as δ → 1)? In the limiting case
(δ = 1) can you come up with a straightforward reason for this prediction? (hint: do agents care about
whether they receive payoffs today or tomorrow?)

Question (medium): what happens if agents have outside options? That is, what if when agent 1 Rejects
in the final round, payoffs are (α1, α2) instead of (0, 0)? Assume that α1 ≥ α2 ≥ 0. What changes if instead
α2 > α1 ≥ 0?

Back-and-forth ultimatum game, redux

To more-robustly illustrate these concepts, let’s link four copies of the ultimatum game rather than 2. That
is, time now passes over four increments (t = 0, 1, 2, 3): agent 1 proposes x1 and agent 2 responds (t = 0);
conditionally, agent 2 proposes x2 and agent 1 responds (t = 1); conditionally, agent 1 proposes x3 and agent
2 responds (t = 2); finally, conditionally agent 2 proposes x4 and agent 1 responds (t = 3). This is pictured
in Figure 4.

Fortunately, subgame-perfect Nash equilibrium has a nice recursive structure. From our previous analysis,
we can already see that at time t = 2 payoffs will be (1− δ, δ). We can then pick up where we left off:

t = 1, response Agent 1 knows that she can receive x2 today if she Accepts or 1 − δ tomorrow if she Rejects. Since
1− δ tomorrow is worth (1− δ)δ today, she should Accept if x2 ≥ (1− δ)δ; her strategy is then{

A if x2 ≥ (1− δ)δ,
R otherwise.
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Figure 4: the four-times-repeated ultimatum game, or, ultimatum game with three counteroffers

t = 1, proposal Agent 2 knows that agent 1 will Accept if x2 ≥ (1−δ)δ, hence if he wants her to Accept he should offer
the least amount possible, x2 = (1 − δ)δ. We need only check now that this is preferable to causing
agent 1 to Reject.

Because we are looking at subgame-perfect Nash equilibrium and agents are rational, we know that if
agent 1 Rejects she will offer δ tomorrow and agent 2 will Accept, giving agent 2 a payoff of δ. This
δ tomorrow is worth δδ = δ2 today. If instead agent 2 offers (1− δ)δ today, he receives an immediate
payoff of6

1− (1− δ)δ = 1− δ + δ2 > δ2

Therefore causing agent 1 to Accept by offering x2 = (1 − δ)δ is better than causing her to Reject.
His strategy is therefore x2 = (1− δ)δ.

t = 0, response Agent 2 knows that he can receive x1 today if he Accepts or 1− (1− δ)δ tomorrow if he Rejects. Since
1− (1− δ)δ) is worth (1− (1− δ)δ)δ) today, he should Accept if x1 ≥ (1− (1− δ)δ)δ; his strategy is
then {

A if x1 ≥ (1− (1− δ)δ)δ,
R otherwise.

t = 0, proposal In the initial round, agent 1 knows that agent 2 will Accept if x1 ≥ (1− (1− δ)δ)δ, hence if she wants
him to Accept she should offer the least amount possible, x1 = (1− (1− δ)δ)δ). We need only check
now that this is preferable to causing agent 2 to Reject.

Because we are looking at subgame-perfect Nash equilibrium and agents are rational, we know that
if agent 2 Rejects he will offer (1 − δ)δ tomorrow and agent 1 will Accept, giving agent 1 a payoff
of (1 − δ)δ. This (1 − δ)δ tomorrow is worth (1 − δ)δδ = (1 − δ)δ2 today. If instead agent 1 offers
(1− (1− δ)δ)δ today, she receives an immediate payoff of

1− (1− (1− δ)δ)δ = 1− δ + δ2 − δ3 > δ2 − δ3 = (1− δ)δ2

Therefore causing agent 2 to Accept by offering x1 = (1 − (1 − δ)δ)δ is better than causing him to
Reject. Her strategy is therefore x1 = (1− (1− δ)δ)δ.

Thus subgame perfection tells us that agent 1 proposes x1 = (1− (1− δ)δ)δ in the first period, and agent 2
immediately accepts. Payoffs are therefore

(u1, u2) =
(
1− δ + δ2 − δ3, δ − δ2 + δ3

)
If you are noticing a pattern here, see the following question.

6Remember, δ < 1.
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Question (hard): what happens as the number of times the game is repeated goes to infinity? Assume
that we are repeating the two-stage game above (i.e., the first mover is not the final responder). (hint [makes
question (medium)]: if agent 2 will get v tomorrow, agent 1 will offer δv today and receive 1− δv herself;
therefore one period prior agent 2 should offer δ(1− δv) and receive 1− δ(1− δv) himself)

Question (medium): compare the 2- and 4-stage games above with the 3-stage (and, optionally, 5-stage)
games in which agent 1 is both the initial proposer and the final responder. What does the extensive-form
game tree look like? Is agent 1 better off or worse off?

Rubinstein bargaining

As a last iteration, what happens if bargaining may continue indefinitely? If you answered Question (hard)
above, you have a preview of this outcome; still, there is a simpler way of analyzing the situation that may
prove useful in the future.

Suppose that we still have two agents bargaining in the above fashion; we will generalize the model slightly
by assuming that agent 1 has discount rate δ1 and agent 2 has discount rate δ2 — that is, the agents may
vary in the extent to which they are patient. This variation will allow us to compare whether it is good to
be more or less patient than your opponent. Although the “circular notation” is far from standard, Figure 5
gives a reasonable picture of the structure of the game.
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Figure 5: Rubinstein bargaining with two players

Now, the immediate trouble with repeating this process infinitely is that we can no longer use backward
induction to find subgame-perfect Nash equilibrium: since there is no final stage of the game, there is
nowhere to start the process of working backward! We are going to have to find a more suitable structure
for analyzing behavior. Instead, let’s think about what changes from t = 0 to t = 2.

At both points in time, agent 1 is making a proposal to agent 2, and agent 2 is responding. At both points in
time, the game can continue infinitely after: by reaching time t = 2, the agents have chewed up two rounds,
but two off of infinity is still infinity. In this sense, the game at time t = 2 looks exactly like the game at
t = 0 except that two units of time have passed.

It stands to reason that we can think of the game in the following manner: prior to play, agents 1 and 2 have
respective utilities u1 and u2 that they anticipate receiving. If agent 2 rejects agent 1’s initial offer and agent
1 rejects agent 2’s counteroffer, we have returned to a phase in which agent 1 is making a proposal. At this
t = 2, we are again at a point where the game looks the same as at t = 0, hence both players should anticipate
obtaining utilities u1 and u2, respectively; pulling back to t = 1, if agent 1 rejects agent 2’s counteroffer,
payoffs are (δ1u1, δ2u2). This allows us to specify the game as in Figure 6.

We can now use our standard subgame-perfection logic to deduce what should happen. Supposing that agent
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Figure 6: “Rubinstein bargaining,” terminated ad hoc with presumed payoffs

2 makes offer y at time t = 1, agent 1 can obtain y today by accepting or u1 tomorrow by rejecting, worth
δ1u1 today. Thus she should accept 2’s offer if y ≥ δ1u1, and in turn agent 2 should offer y∗ = u1.

If agent 1 receives utility u1, agent 2 must receive utility u2 = 1 − u1. Hence at time t = 0, agent 2 is
choosing between accepting x today and rejecting in favor of receiving 1−δ1u1 tomorrow, worth (1−δ1u1)δ2
today. It follows that agent 2 should accept agent 1’s offer if x ≥ (1− δ1u1)δ2. Looking to minimize her offer
to agent 2, agent 1 should offer agent 2 x∗ = (1− δ1u1)δ2; since agent 2 will accept such an offer, agent 1’s
payoff is 1− (1− δ1u1)δ2.

By assumption, agent 1’s payoff is u1; hence we have

u1 = 1− (1− δ1u1)δ2

⇐⇒ u1 − δ1δ2u1 = 1− δ2

⇐⇒ u1 =
1− δ2

1− δ1δ2
Since agent 2 immediately accepts agent 1’s offer, agent 1’s payoff must be u1 = 1− x∗ and agent 2’s payoff
must be u2 = 1− u1 = x∗. Thus we know that agent 1 offers

x∗ = 1− 1− δ2
1− δ1δ2

=
δ2(1− δ1)

1− δ1δ2
Agent 2 accepts immediately.

The leap we had to make here was presuming that players know the value of the game before they play;
however, given an equilibrium players can always assess their expected utility from playing according to the
specified strategies. Once we accept that players know the value of the game, we have all the information
we need to find this particular equilibrium.

Question (easy): which player gets greater utility, the more- or less-patient player? Does it depend on
who makes the first proposal?

Question (easy): what is the outcome if players are equally patient? Does this align with your answer to
Question (hard) above?

Question (medium): considering the previous footnote, what is agent 1’s optimal strategy if agent 2
threatens to offer 0 at every point in time? Can this constitute an equilibrium? If so, what are payoffs and
why is this unappealing? What “nice” assumptions given in the footnote are violated?
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