
Economics 201c: week 3 Kyle Woodward

This is a draft; email me with comments, typos, clarifications, etc.

The intuitive criterion

There has been some confusion recently regarding MWG’s definition of the intuitive criterion as compared
to Riley’s. It is inarguable that Riley’s definition is simpler (and, punnily, more intuitive); we can also show
that, for the types of well-behaved problems we will be discussing in class, the two definitions are identical.

Definition

Riley’s version: suppose we have a perfect Bayesian equilibrium with
payoffs denoted by uNi (θ) for an agent of type θ. Let âi be a strategy
which is played with zero probability in this equilibrium, and let ui(âi, θi)
be player i’s utility from playing âi if it is believed (by all others) that she
is type θi ∈ Θi. This equilibrium fails the intuitive criterion if for some
player i of type θ̂i ∈ Θi,

ui

(
âi, θ̂i

)
> uNi

(
θ̂i

)
and for all other types θ ∈ Θi \ {θ̂i},

ui (âi, θ) < uNi (θ)

Riley’s variant says that an equilibrium fails the intuitive criterion if some player can posit a strategy which
leaves her type better off but all others worse off. Note that, provided preferences are continuous (which
we are given in Riley’s questions, as utility functions are assumed continuous and differentiable) the second
inequality in the above statement of the intuitive criterion may be replaced with ≤.

Definition

MWG’s version: a perfect Bayesian equilibrium violates the intuitive
criterion if there exists a type θ and an action a such that

min
s∈S∗(Θ∗∗(a),a)

ui(a, s, θ) > u∗i (θ)

where u∗1(θ) is the payoff to player i of type θ resulting in the perfect
Bayesian equilibrium.

Reading MWG (pp469–471) is highly recommended, as we are papering over quite a few definitions here.

Citing MWG’s definition leaves open the definition of S∗(Θ∗∗(a), a). We can give this analytically, but it
will suit our present purposes to appeal to hand-waving. Θ∗∗(a) is the set of types which can do better by
playing a for some beliefs supporting some best response s on the part of the other players. S∗(Θ̂, a) for
Θ̂ ⊂ Θ is the set of equilibrium responses by players −i which may follow i playing a if it is believed that
θ ∈ Θ̂.

So in the MWG definition, a perfect Bayesian equilibrium fails the intuitive criterion if the worst player i
can do in equilibrium if other players believe her type is among those who may construct a deviation to a
which is profitable for some best-response opponent strategy, is better than she is doing in the particular
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perfect Bayesian equilibrium (this sentence may need to be read several times). This is more concordant
with Riley’s definition than may appear: the only apparent difference is that MWG does not restrict the
new strategy to be perfectly revealing of the player’s type.

How can we show that Riley’s definition is sufficient? We appeal to single-crossing and well-behaved utility
functions in the case with finite types; this is more of a sketch of an argument than a formal proof, but
hopefully the points hit home (and generalize well to the continuous-type case). Organize types into those
who can possibly do better at a and those that cannot; WLOG, we can assume that there is some type
which is perfectly indifferent between this new action and that in perfect Bayesian equilibrium (otherwise,
by niceness of utility we can increase the desirability of the bundle in question to the point that some
agent who was previously unhappy at the new allocation is now indifferent to it). By single-crossing, agents
should be well-ordered: higher types prefer the new action and lower types prefer the existing equilibrium
payoffs. Slide the new action along the indifferent type’s indifference curve until the next-highest type
is indifferent. Now slide the new action along the higher of the two indifferent type’s indifference curve
until the next-highest type is indifferent; at this point the original indifferent type will prefer the perfect
Bayesian equilibrium outcome to the “slid” action (by single-crossing). We can iterate this process until only
the highest type prefers the “slid” action; this implies the existence of some action profile which uniquely
identifies a player of being of the highest type. Thus Riley’s definition is satisfied.

Again, this argument deserves to be fleshed out (to ensure that it’s valid and misses nothing) but hopefully
it serves as a clarification of why the two perspectives are identical in the world with well-behaved utility
functions and single crossing. It is also worth remembering that Riley’s definition is far easier to recall and
apply than the MWG definition.

Incentive compatibility

Incentive compatibility is a more formal structure around a concept we’ve been freely abusing throughout
this class: it must be [weakly] optimal for agents to either truthfully report their type, or to play as to
[weakly]1 reveal their type (these are, of course, two sides of the same coin once we apply the revelation
principle).

Definition

A mechanism {(qt, rt)}t is incentive compatible if, for all types t and all
types s,

(qt, rt) �t (qs, rs)

Hopefully it’s clear how this definition might generalize outside of the Riley context (i.e., where allocations
are not explicitly given by (qt, rt)). Now, because I have a habit of reversing the definitions of the local
incentive constraints, here are two more useful definitions.

Definition

1We say “weakly” here to account for the possibility that pooling is optimal in equilibrium; in the event of pooling, types
are of course generally not perfectly revealed, but on the other hand this implies no ill effects for agents in the system.
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Type t’s local downward incentive constraint is

(qt, rt) �t (qt−1, rt−1)

Her local upward incentive constraint is

(qt, rt) �t (qt+1, rt+1)

The best way to keep these two straight is to consider which direction an agent is looking to see whether
or not she’d prefer to deviate; when she’s looking up (from t to t + 1) she’s considering the local upward
constraint, and when she’s looking down (from t to t− 1) she’s considering the local downward constraint2.

We have seen in the lecture notes that local incentive compatibility and single crossing imply global incentive
compatibility; a slightly less general version of this also appeared in one of the questions in the week 2
handout.

In working through the problems below, there seems to be a general principle regarding the relationship
between the intuitive criterion and incentive compatibility. While it is certainly possible for an incentive
compatible mechanism to fail the intuitive criterion (consider strange Bayesian Nash equilibria; by off-path
beliefs truthful reporting is generally optimal, but a different set of equilibrium beliefs could make the agents
better off), it seems to hold that not being incentive compatible implies that the intuitive criterion is not
satisfied. This may seem to be fairly obvious: if truthful reporting is not optimal, we should be able to alter
the mechanism so that truthful reporting is optimal, which must yield a higher payoff for the player who
was previously lying.

Let’s put some concreteness around the concept: in many Riley questions, we are asked to show that any
mechanism which satisfies the intuitive criterion must satisfy certain incentive compatibility requirements,
assuming single crossing. In particular, it is generally asked to ensure that one of the local constraints must
be binding. The argument universally proceeds as follows: if a particular constraint is not binding, we
may alter one dimension of the allocation by ε, up or down (context-dependent) while retaining all relevant
incentive constraints3. It follows then that the agent can credibly report off the equilibrium path in such a
way as to respect incentive constraints, certainly revealing his type; but when this is the case, the intuitive
criterion is violated. Thus violation of the intuitive criterion is often sufficient to assert that one of the local
incentive constraints binds, assuming single crossing. Of course this argument is not particularly rigorous,
but most Riley arguments regarding binding incentive constraints will follow this path.

Continuous types

As we move analysis to continuous-type cases, the essential underlying notion of incentive compatibility will
remain the same; however, we can apply a system of well-developed analytical shortcuts to make analysis
more succinct. This will, in general, require well-behavedness of the underlying functions (in particular,
continuity and continuous differentiability) but this is a small price to pay for a sizable amount of economic
intuition.

Riley has claimed in class that V ′(θ) = uθ(q(θ), r(θ); θ) is a sufficient condition (along with monotonicity of
q(·), single crossing, and well-behavedness) for incentive compatibility in continuous types. We’ll reproduce

2Yes, this is ridiculous; but if this saves even one person from screwing it up somewhere down the line it’s done its job. As
I’ve told undergraduates in the past, it’s not my intention to treat anyone like a kindergartener, odd mnemonics just really help
me (and therefore, by symmetry, others).

3Generally speaking, it is necessary to make some mention of “daisy-chain” type arguments to ensure that incentives don’t
unravel one direction or another; for an example of this, see Essential Microeconomics question 11.2-3 below. Still, arguments
regarding unravelling generally follow the same set of steps that arguments which don’t consider unravelling do, so they’re
uninteresting to consider at this high level.
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his proof here, expanding the later sections slightly, and introduce some graphical intuition. In contrast to
Riley’s notation, we’ll use U(θ; θi) as the utility of an agent of type θi who reports type θ; I apologize for
the switch but it is more intuitive in my eyes to parameterize utility by an agent’s own type, and this avoids
confusion as to which θ is reported and which is the true type.

Suppose θ2 > θ1. By incentive compatibility (and here regardless of the order of the types), we require

U(θ2; θ2) ≥ U(θ1; θ2), U(θ1; θ1) ≥ U(θ2; θ1)

That is, truthful reporting is weakly optimal. We can subtract U(θ1; θ1) from both sides of the first inequality
and subtract U(θ2; θ2) from both sides of the second inequality; this yields

U(θ2; θ2)− U(θ1; θ1) ≥ U(θ1; θ2)− U(θ1; θ1)

U(θ1; θ1)− U(θ2; θ2) ≥ U(θ2; θ1)− U(θ2; θ2) ⇐⇒ U(θ2; θ2)− U(θ1; θ1) ≤ U(θ2; θ2)− U(θ2; θ1)

Of course, these inequalities will still hold if we divide by θ2 − θ1 (since we assume θ2 > θ1), so we have

U(θ2; θ2)− U(θ1; θ1)

θ2 − θ1
≥ U(θ1; θ2)− U(θ1; θ1)

θ2 − θ1

U(θ2; θ2)− U(θ1; θ1)

θ2 − θ1
≤ U(θ2; θ2)− U(θ2; θ1)

θ2 − θ1

Let’s restrict our attention to the first equation, since the second will follow symmetrically. Under the
assumption that truthful reporting is optimal, we have

V (θ2)− V (θ1)

θ2 − θ1
≥ U(θ1; θ2)− U(θ1; θ1)

θ2 − θ1

Now let θ1 → θ2; that is, let the types become arbitrarily close as we may in a continuous type space. We
have, in the limit

lim
θ1→θ2

V (θ2)− V (θ1)

θ2 − θ1
= V ′(θ2)

lim
θ1→θ2

U(θ1; θ2)− U(θ1; θ1)

θ2 − θ1
= U2(θ2; θ2)

The latter limit is the derivative of U with respect to the agent’s true type; we know, spanning the notational
divide

U2(θ2; θ2) = uθ(q(θ2), r(θ2); θ2)

Properties of limits then give us
V ′(θ2) ≥ uθ(q(θ2), r(θ2); θ2)

It should be evident that we can follow the same process with the second inequality, obtaining an analogous
inequality with ≤. Piecing these two together, we obtain that incentive compatibility implies some shape on
the value function,

V ′(θ) = uθ(q(θ), r(θ); θ)

Graphically, what’s going on here? Suppose that (qt, rt) is the equilibrium allocation of type θt. We can plot
the function u(qt, rt; θ), representing the utility that an agent of type θ receives from the allocation (qt, rt);
that is, this is the utility that an agent of type θ receives from playing as if he were type θt. In this graph,
we are considering utility as a function of θ and ignoring all dynamics due to changes in (q, r).

To establish that the value function V (·) must be tangent to u(qt, rt; ·) at θt, consider what happens if this
tangency condition is not fulfillied; in particular, suppose that V ′(θt) < uθ(qt, rt; θt) (the opposing inequality
will follow identically). Then by increasing θt infinitesimally to θ′ = θt + ε, we know from local linearity
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u(qt,rt;θ)

V(θ)

u(qt,rt;θ) and V(θ)

Figure 1: the value function V (·) must be tangent to u(q(θ), r(θ); ·) for all types θ; otherwise, the utility
available to neighboring types from deviating is greater than their optimal utility in the mechanism (the
dashed red lines), a violation of incentive compatibility.

that V (θ′) < u(qt, rt; θ
′). That is to say, type θ′’s optimal utility in the constrained problem is less than the

utility she can get by playing as if she were type θt. So she has a positive incentive to misreport, a violation
of incentive compatbility.

Since this logic will show us as well that V ′(θt) cannot be greater than uθ(qt, rt; θt) we then have that
incentive compatibility gives us V ′(θ) = uθ(q(θ), r(θ); θ) for all θ4.

Essential Microeconomics, exercise 11.1-3

A type-θ consultant has a marginal product of m(θ) = kθ where Θ = [0, β]. The cost of accumulating
educational credential q is C(θ, q) = q

θ2 so that the payoff to a type-θ consultant if she receives a payment r
for her services is

u(θ, q, r) = r − q

θ2

4This last step — that establishing this for θt establishes it for all θ — may make implicit use of the envelope theorem;
regardless, it’s kosher.
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(a) Show that a necessary condition for incentive compatibility in a separating equilibrium is q′(θ) = kθ2.

Solution: to retain incentive compatibility, agents must utility-maximize. Then from the first-order
conditions on the utility function,

∂

∂θi
u(θi; θ) = r′(θi)−

q′(θi)

θ2

We know this quantity should equal 0. Further, from the firm’s side we have r(θi) = m(θi), so
r′(θi) = k. This gives us

k − q′(θi)

θ2
= 0

Under incentive compatibility, agents truthfully report; we obtain

kθ2 = q′(θ)

(b) Let V (θ) = kθ − q(θ)
θ2 be the equilibrium payoff. Show that V ′(θ) = 2q(θ)

θ3 .

Solution: using the envelope theorem, we find the first derivative of the value function to be

V ′(θ) = r′(θ)− q′(θ)

θ2
+

2q(θ)

θ3

=
2q(θ)

θ3

(c) Hence show that the equilibrium payoff must satisfy the following differential equation:

2θV (θ) + θ2V ′(θ) = 2kθ2

Solution: substituting in for the first derivative of the payoff function,

V (θ) = kθ − θ

2
V ′(θ)

It follows that
2θV (θ) = 2kθ2 − θ2V ′(θ)

Rearranging,
2θV (θ) + θ2V ′(θ) = 2kθ2

(d) Solve this differential equation and hence show that V (θ) = 2
3kθ.

Solution: we see that the above is equivalent to

∂

∂θ

[
θ2V (θ)

]
=

∂

∂θ

[
2k

3
θ3

]
Integrating up from 0, we find

θ2V (θ) =
2k

3
θ3

Dividing out,

V (θ) =
2kθ

3
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(e) Let r = R(q) be the equilibrium wage offered to a worker who chooses signal level q. Show that

R′(q) =
1

θ2

Solution: this is equivalent to part (a) above; however, instead of differentiating with respect to type
θi, we differentiate with respect to q:

∂

∂q
u (q,R(q); θ) =

∂

∂q

[
R(q)− q

θ2

]
= R′(q)− 1

θ2

It follows from maximization that

R′(q) =
1

θ2

(f) Hence show that R(q)2R′(q) = k2.

Solution: suppose that a play of q indicates type θ; then the equilibrium payment upon play of q is
R(q) = kθ. It follows that

R(q)2R′(q) = (kθ)
2

(
1

θ2

)
= k2

(g) Solve for the equilibrium payment function.

Solution: the above is an apparent differential equation. Then integrating up from 0 (hand-waving
over R(0) = 0), we see

1

3
R(q)3 = k2q

It follows that
R(q) = 3

√
3k2q

Note that this may also be obtained from the value function. With V (θ) = 2kθ
3 and r(θ) = kθ, we

know that q(θ)
θ2 = kθ

3 . This gives us q(θ) = kθ3

3 ; then substituting into the equation r(θ) = kθ we can
obtain

R(q) = 3
√

3k2q

This method seems easier and more straightforward to me.

Essential Microeconomics, exercise 11.2-3

A type-θ worker’s marginal product is m(θ) where θ ∈ Θ = {θ1, . . . , θT }. Her outside opportunity wage is
r0. The signalling cost function is C(θ, q).

Further, suppose C(θ, 0) = 0, cost is strictly increasing in q, and that single crossing is satisfied.

(a) Show that to satisfy the intuitive criterion, the lowest type that signals, θt, must satisfy the following
conditions: m(θt)− C(θt−1, qt) = r0, and m(θt−1) ≤ r0.

Solution: suppose m(θt)−C(θt−1, qt) > r0. Then type θt−1 is better off by misreporting type θt than
by staying out of the mechanism (our presumption) so this cannot be a perfect Bayesian equilibrium.
Now suppose m(θt)− C(θt−1, qt) < r0; type θt−1 is now strictly opposed to entry. Under the intuitive
criterion, type θt may be able to abuse this to capture more surplus.
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Let q̂ be such that m(θt)− C(θt−1, q̂) = 0; clearly, q̂ < qt. Let q∗ ∈ (q̂, qt), so

m(θt)− C (θt, qt) < m(θt)− C (θt, q
∗)

Further, since C is strictly increasing it follows that for all t′ < t,

m(θt)− C (θt′ , q
∗) < r0

If (qt+1, rt+1) �t+1 (qt, rt), it is obvious from single crossing that we can pick some q∗ in the appropriate
range so that incentive compatibility still holds in all directions and type t is better off; thus the intuitive
criterion is not validated. So suppose instead that (qt+1, rt+1) ∼t+1 (qt, rt). Let t̄ denote the lowest
type so that (qt̄, rt̄) �t̄ (qt̄−1, rt̄−1) (or T if there is none such). If t̄ = T , we know by single crossing
that (qT , rT ) ≺T−1 (qT−1, rT−1); then we can reduce qT slightly to increase type θT ’s payoff while
retaining incentive compatibility. Thus the intuitive criterion is still not satisfied.

Lastly, suppose t̄ < T . By single crossing, we know (qt̄−1, rt̄−1) ≺t̄−2 (qt̄−2, rt̄−2). Following from
this and our definition of t̄, we can reduce qt̄−1 slightly to increase type θt̄−1’s payoff while retaining
incentive compatibility. Thus the intuitive criterion is violated.

From these cases, we find that we must have m(θt) − C (θt−1, qt) = r0. This directly implies that
m(θt) ≥ r0. We now demonstrate that m(θt−1) ≤ r0. Suppose to the contrary that m(θt−1) > r0. Then
there is some qt−1 such that C(θt−1, qt−1) = m(θt−1)− r0; it is apparent that at such (qt−1,m(θt−1)),
type θt−1 is indifferent between her allocation and type θt’s. By the single-crossing property, type θt
must then strictly prefer his allocation to this new allocation for θt−1. From this strictness, we can
reduce qt−1 slightly so that type θt−1 strictly prefers θt−1 − ε to the outside option r0 while type θt
still prefers his original bundle. Further, by C being increasing in the θ we know that lower types will
also not see fit to deviate (for ε sufficiently small). Then θt−1 has an available deviation which reveals
her type, a violation of the intuitive criterion. We must then have m(θt−1) ≤ r0.

(b) Taking the limit as the difference between types approaches zero, show that qt → 0 and m(θt)→ r0.

Solution: we begin by defining what it means (or rather, might mean) to have the difference between
types go to 0. While the results seem to hold for a broad class of limiting tendencies, let Θ1 = Θ as
above; recursively define

Θi+1 = Θi ∪
{
θj + θj+1

2
: 1 ≤ j < |Θi|

}
That is, Θi+1 is Θi along with all consecutive means. Roughly speaking, as i→ i+ 1, Θi→i+1 becomes
twice as dense.

Suppose θt−1 → θ∗; since θt − θt−1 → 0, it follows that θt → θ∗, as well. Now having seen m(θt) ≥ r0

and m(θt−1) ≤ r0, so long as m(·) is continuous we should have

m(θt−1)→ m(θ∗), m(θt)→ m(θ∗)

By properties of limits, we know m(θ∗) ≤ r0 and m(θ∗) ≥ r0; hence m(θ∗) = r0, and m(θt)→ r0.

Again appealing to continuity, we know

m(θt)− C (θt−1, qt) = r0

It follows that, in the limit,

m(θ∗)− C
(
θ∗, lim

i→∞
qt

)
= r0

Subtracting known values,

C
(
θ∗, lim

i→∞
qt

)
= 0
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Assumptions on the shape of the cost function then give us

lim
i→∞

qt = 0

More succinctly, qt → 0.

Notice that these results are fairly independent of the precise manner in which types become dense; it
is necessary above to state a particular mechanism only to establish some baseline for intuition.

Essential Microeconomics, exercise 11.2-6

A worker of type θ has a marginal product of m(θ, q) = 2θq
1
2 if he achieves education level q. His cost

of education is C(θ, q) = q
θ . Types are continuously distributed on the interval [0, 4]. There is no outside

opportunity.

(a) With full information, show that type t will choose q∗(θ) = θ4 and that his wage will be m(θ, q∗(θ)) =
2θ3.

Solution: under full information, the firm is aware of the agent’s type as well as the signalled level of
education. Then the equilibrium payment level is r = 2θq

1
2 . The agent’s optimization is

max
q

2θq
1
2 − q

θ

First-order conditions give us

θq−
1
2 =

1

θ

Rearranging, it is immediate that
q∗(θ) = θ4

Substituting in for the agent’s value to the firm, we find

m(θ, q∗) = 2θ
√
θ4

= 2θ3

(b) With asymmetric information, extend the argument above to show that the equilibrium wage function
r(q) must satisfy the following ordinary differential equation:

2r(q)
∂r

∂q
= 4q

1
2

Solution: under asymmetric information, we can consider the agent as optimally revealing a type;
however we can remove the direct revelation aspect from the question and consider simply signalling a
particular level of education. Following our usual approach, we see

∂

∂q
u(q; θ) = r′(q)− 1

θ

At the optimum, then,

r′(q) =
1

θ

According to the firm’s optimal payout, r(q) = 2θq
1
2 . Then multiplying both sides of the above by this

quantity, we find
r(q)r′(q) = 2q

1
2
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Multiplying by 2 we can obtain the desired result.

Note that the difference here between the present result and that in part (a) is completely due to
whether or not the firm’s response is endogenized by the agent (i.e., whether we are solving the
planner’s problem or the second-best allocation).

(c) Solve for the equilibrium level of education q(θ) and the wage function r(q).

Solution: we may transform the above to obtain

∂

∂q

[
r(q)2

]
= 4q

1
2

Integrating up, we find

r(q)2 =

(
8

3

)
q

3
2 =⇒ r(q) =

√
8

3
q

3
4

Recall from part (b) that, at the optimum r′(q) = 1
θ . It follows that(

3

4

)√
8

3
q−

1
4 =

√
3

2
q−

1
4 =

1

θ

Rearranging, this gives us

q∗(θ) =

(
9

4

)
θ4

As is often the case in problems of asymmetric information, the agent is incurring an extra cost (in
fact, 125% more cost) to signal her type to the firm; of course, this effect here is somewhat confounded
as the agent is becoming simultaneously more useful to the firm, but the intuition provided should
prove fairly general (in all circumstances where the agent finds it worth her while to report her type;
asymmetric information could prove powerful enough — a la Akerloff’s lemons model — to destroy
any incentive whatsoever to signal).

If this method of solution (from parts (b) and (c)) seems unfamiliar, this question can also be solved
(or verified, if need be) by the following process:

• Take first-order conditions of u(θi; θ) with respect to θi.

• Use the above along with first-order conditions for optimality and the revelation principle to
obtain an equation in θ alone (this includes the functions r(·) and q(·)).

• Substitute in for the firm’s response r(θ, q).

• Express the above as a differential equation in θ; this takes some serious rearrangement.

• Integrate up and obtain the desired result.

This series of steps is more in line with what we’ve seen this year. Still, it is useful to be versed in a
number of suitable approaches to any particular question.

Essential Microeconomics, exercise 11.3-3

Each consumer purchases either one unit from a firm’s product line or nothing at all. Different consumers
place different values on product quality. A type θt consumer’s value of a unit of quality q is

B(θt, q) = θt

(
10q − 1

2
q2

)
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This is private information. The cost of producing a unit of quality q is 6q. There are three types, θt ∈ {1, 2, 3}
and there are equal numbers of each type.

(a) Solve for the optimal quality levels.

Solution: we interpret this question to mean that we should find the first-best (i.e., full information)
quality levels. Assuming that the firm charges its cost to the agents, the maximization is

qt = argmax
q

θt

(
10q − 1

2
q2

)
− 6q

First-order conditions give us
qt = 10θt − 6

(b) Solve for the profit-maximizing quality levels.

Solution: we assume that we are no longer in the first-best solution, and that types are private
knowledge. Further, it seems reasonable given the demands and type distributions that it will be
optimal to provide three distinct packages; we’ll see later that this causes trouble.

From the single-crossing property, we know that local downward constraints will bind (for a more
thorough take on this, check out part (d) of the 2010 Spring comp question below). This gives us the
following equalities:

r1 = B(θ1, q1)

r2 − r1 = B(θ2, q2)−B(θ2, q1)

r3 − r2 = B(θ3, q3)−B(θ3, q2)

These may be restated to give us maximizing price levels of

r1 = B(θ1, q1)

r2 = B(θ2, q2)−B(θ2, q1) +B(θ1, q1)

r3 = B(θ3, q3)−B(θ3, q2) +B(θ2, q2)−B(θ2, q1) +B(θ1, q1)

The firm’s problem is then stated as (with equal numbers of each type, we can ignore distributional
terms)

max
ri,qi

r1 + r2 + r3 − 6q1 − 6q2 − 6q3, s.t. IC

= max
qi

3B(θ1, q1) + 2B(θ2, q2)− 2B(θ2, q1) +B(θ3, q3)−B(θ3, q2)− 6 (q1 + q2 + q3)

We know
Bq(θ, q) = θ(10− q)

Then first-order conditions from the firm’s problem give us

∂

∂q1
: 0 = 3θ1(10− q1)− 2θ2(10− q1)− 6

∂

∂q2
: 0 = 2θ2(10− q2)− θ3(10− q2)− 6

∂

∂q3
: 0 = θ3(10− q3)− 6
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Solving these equations we obtain

q1 = 10− 6

3θ1 − 2θ2

q2 = 10− 6

2θ2 − θ3

q3 = 10− 6

θ3

Plugging in for known values of θt,

q1 = 16

q2 = 4

q3 = 8

However, it is evident that q1 is not amenable to incentive compatibility! The firm now has two options:
it can either pool some types together, or it can cut type θ1 out of the market. In the latter case, the
firm will extract full surplus from type θ2, leading to an optimization of the form

max
qi

2B(θ2, q2) +B(θ3, q3)−B(θ3, q2)− 6(q2 + q3)

First-order conditions will give us

q1 = 0

q2 = 4

q3 = 8

We can see that it will not be optimal to have types θ2 and θ3 pool (θ3’s incentive constraint will cause
headaches in this case); what if types θ1 and θ2 pool? Intuitively, this will result in lower surplus for the
firm per-agent, but since this allows more agents to participate the firm may be better off. Type θ1’s
surplus will be fully-extracted, and type θ3’s downward constraint will bind; the firm’s optimization is
then

max
qi

3B(θ1, q1) +B(θ3, q3)−B(θ3, q1)− 6(2q1 + q3)

First-order conditions here give us q1 = ±∞, a clear problem.

It follows that optimal quantities are (q1, q2, q3) = (0, 4, 8).

(c) Solve for the price charged for each product in the monopolist’s product line.

Solution: using the above incentive constraints, we have

r1 = 0

r2 = 2

(
10(4)− 1

2
42

)
= 64

r3 = 3

(
10(8)− 1

2
82

)
− 3

(
10(4)− 1

4
42

)
+ r2

= 3(48)− 3(32) + 64

= 112

The firm’s profits are then
π = 64 + 112− 6(4 + 8) = 104
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2010 practice midterm, question 4

Consider an educational signalling model where the marginal product of a type-θ worker is θ and her cost
of signalling is

(i) C1(θ, x) =
x

1 + θ

(ii) C2(θ, y) =
y2

1 + θ

(iii) C3(θ, z) =
z3

2 + θ

It is unclear whether these technologies are meant as different subproblems or as technologies to the same
problem; we take the latter approach although, in hindsight, the former would prove significantly easier.

(a) If there are two types, θ ∈ {θ1, θ2}, where 0 < θ1 < θ2 characterize the equilibrium payoff in each case
if the equilibrium satisfies the intuitive criterion.

Solution: already, we know that at least one type should signal 0 education. Since θ1 < θ2, the cost
to type θ1 for obtaining a particular level of education is always greater than the cost to type θ2; it
follows that type θ1 should obtain q = 0 and receive r = θ1.

What will θ2 do in an equilibrium satisfying the intuitive criterion? We need to solve for type θ1’s
indifference along all three mechanisms to see which performs best for type θ2

5. Solving generically,
we have

θ1 = θ2 −
qk

bk + θ1

It is apparent that for indifference, we need

qk = (θ2 − θ1) (bk + θ1)

To satisfy the intutive criterion, type θ2 must select the mechanism which minimizes his cost. We then
check

min
k

qk

bk + θ2
= min

k

(θ2 − θ1) (bk + θ1)

bk + θ2

It is evident that this is minimized when we minimize

min
k

bk + θ1

bk + θ2

With θ1 < θ2, the mechanism selected will have bk = 1 and so education will be obtained from either
mechanism 1 or mechanism 2. In either event, the payoffs to type θ2 are identical. Fully-described
equilibrium payoffs are then

u(θ1) = θ1, u(θ2) = θ2 −
(θ2 − θ1) (1 + θ1)

1 + θ2

Notice that when θ1 is close to θ2, type θ2 does not need to obtain much education to keep type θ1

from copying; this is because the rewards from deviation are greatly reduced.

5There is an embedded assumption here that is not generally made clear: not only is the level of education observable, but
so is the mechanism by which this education is obtained; that is, the signal is now not only quantity of education but also the
signalling mechanism. Although we can abstract away from this if necessary (consider, for example, a single technology which
allows agents to choose the minimum from a menu of costs; we could also apply incomplete information to the situation) it is
useful in this context to consider education as, say, getting a PhD or a Bachelor’s from Harvard or DeVry.
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(b) Repeat the analysis if types are continuously-distributed on [0, 1].

Solution: we know

V (θ) = r(θ)− q(θ)k

bk + θ

It follows from the envelope theorem that

V ′(θ) =
q(θ)k

(bk + θ)2

We then see
V (θ) = r(θ)− V ′(θ)(bk + θ)

Knowing r(θ) = θ, we may integrate up and find

V (θ) =
θ2

2 (bk + θ)

Notice that this implies that there is no difference between signalling technologies 1 and 2! Further,
signalling technology 3 is dominated for all θ > 0. We perform one further check to see if there are
any possible tangencies between the signalling technologies (focusing only on technologies 1 and 3),

V ′1(θ) =
θ2 + 2θ

2(1 + θ)2

V ′3(θ) =
θ2 + 4θ

2(2 + θ)2

Rearranging, we have

V ′1(θ) =
θ

2(1 + θ)
+

θ

2(1 + θ)2

V ′3(θ) =
θ

2(2 + θ)
+

2θ

2(2 + θ)2

It is easy to see algebraically that V ′1(θ) > V ′3(θ) for all θ > 0, so there are no possible points of
identical slope along the two value functions. It follows that there is now possible method to substitute
to an alternate technology in a profitable way. Then to satisfy the intuitive criterion, all agents use
signalling technology 1, or all agents use signalling technology 2 and obtain values of

V (θ) =
θ2

2 + 2θ

2010 Spring comp, question 5

(a) A monopoly offers different “plans,” where a plan is a payment r for q units. That is, a q-pack costs r.
What is the single-crossing property? Confirm that it holds if a type-t agent’s demand price function
pt(q) is greater for higher types.

Solution: the single-crossing property claims that higher types have a stronger preference for the
commodity good. In particular, for all s < t and q′ < q we have

(q, r) �s (q′, r′) =⇒ (q, r) �t (q′, r′)

Buyer surplus is defined as

Bt(q, r) =

∫ q

0

pt(x)dx− r
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Now suppose we have (q, r), (q′, r′) with q′ < q so that

Bs(q, r) ≥ Bs(q′, r′)

It follows that ∫ q

q′
ps(x)dx ≥ r′ − r

Assuming s < t, we have ps(q) < pt(q). Then we must have∫ q

q′
pt(x)dx > r′ − r

and it is immediate that
Bt(q, r) > Bt(q

′, r′)

Then when (q, r) �s (q′, r′) and ps(q) < pt(q), (q, r) �t (q′,′ r′), and the single-crossing property holds.

(b) Let (qt, rt) be the plan selected by type-t buyers. That is, a type-t buyer pays rt for qt units. Show
that it is necessarily the case that if s < t, then qs < qt.

Solution: for incentive compatibility, we need (qs, rs) �s (qt, rt). As argued above, if qt < qs we must
have (qs, rs) �t (qt, rt), a violation of incentive compatibility. Now suppose qt = qs; for (qs, rs) �s
(qt, rt) we must have rs ≤ rt (provided utility is decreasing in r). Assuming that we are representing
a separating equilibrium, we cannot have rs = rt, so rs < rt. But if this is the case, we have
(qs, rs) �t (qt, rt), a violation of single crossing. Therefore s < t implies qs < qt.

(c) Prove that for any {(qt, rt)} satisfying the above monotonicity condition, revenue is maximized if and
only if the local downward constraints are binding.

Solution: suppose that the local downward constraints do not bind, (qt, rt) �t (qs, rs) for s < t. Then
since (qs, rs) �s (qt, rt), we may increase rt slightly while maintaining the local upward constraint for
s and the local downward constraint for t. But this has the effect of increasing the firm’s revenue while
maintaining all constraints.

The only real concern here is that by increasing rt we will violate type-t’s upward constraint. But we
can increase rt′ along with rt (for any t′ > t) to maintain the local upward constraints for all higher
types; this further increases firm revenue. Moreover, we are assured that participation constraints will
not be an issue since the lower types weakly prefer entry and we have single crossing.

Thus if the local downward constraint is not binding, we have the ability to raise the price rt of a qt
pack without affecting an agent’s willingness to purchase. This implies that we may freely increase
revenue at least slightly, and thus the firm is not revenue-maximizing.

Showing the other direction is problematic: it is not hard to construct a monotonic separating equilib-
rium in which the local downward constraints are binding but revenue is not maximized (for example,
take the quantities in any such equilibrium and let q′t = 1

2qt; set r′t so that the local downward con-
straints bind; revenue here should be either lower or higher than in the previous case, indicating that
revenue in one case or the other is not maximized). We take this, then, to intend that fixing {qt}Tt=1,
binding constraints imply revenue maximization; however this is apparent from the methods above.
The only way to obtain more revenue, keeping qt fixed, is to raise rt. Since local downward constraints
are binding, raising rt will violate incentive compatibility, establishing the impossibility of the firm
doing any better.

It follows that revenue is maximized if and only if the local downward constraints bind, fixing {qt}Tt=1.

(d) In the two-type case, suppose that the number of each type is the same (N1 = N2 = N). Total cost
is a strictly convex function C(Nq1 + Nq2). The demand price functions are pq = 100 − 1

2q1 and
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p2 = 120− 1
2q2. If it is profit-maximizing to offer two plans, what can you say about the difference in

the number of units in each plan?

Solution: to begin, notice that one agent or the other must receive 0 net utility; otherwise, by our
standard arguments, the firm is not profit-maximizing. Suppose that type θ2 receives 0 utility; then
we have

r2 =

∫ q2

0

120− 1

2
qdq = 120q2 −

1

4
q2
2

By binding local downward constraints,

r1 =

∫ q1

0

120− 1

2
qdq −

∫ q2

0

120− 1

2
qdq + r2

= −
∫ q2

q1

120− 1

2
qdq + 120q2 −

1

4
q2
2

= 120q1 −
1

4
q2
1

Type θ1’s utility is then ∫ q1

0

100− 1

2
qdq − r1 = −20q1

So if q1 > 0, type θ1’s participation constraint is violated!

It follows then that type θ1’s participation constraint must bind. Then we have

r1 =

∫ q1

0

100− 1

2
qdq

From binding local downward constraints, we know∫ q2

0

120− 1

2
qdq − r2 =

∫ q1

0

120− 1

2
qdq − r1

This gives us

r2 − r1 =

∫ q2

q1

120− 1

2
qdq

We can substitute these constrained-optimal prices into the firm’s maximization problem (recalling
that there are N agents of each type),

max
q1,q2

N

∫ q1

0

100− 1

2
qdq +N

(∫ q2

q1

120− 1

2
qdq +

∫ q1

0

100− 1

2
qdq

)
− C (Nq1 +Nq2)

First-order conditions yield

∂

∂q1
: 0 = 2N

(
100− 1

2
q1

)
−N

(
120− 1

2
q1

)
−NC ′(Nq1 +Nq2)

∂

∂q2
: 0 = N

(
120− 1

2
q2

)
−NC ′(Nq1 +Nq2)

Equating both sides, the C ′(·) terms will cancel; this gives us

2N

(
100− 1

2
q1

)
−N

(
120− 1

2
q1

)
= N

(
120− 1

2
q2

)
⇐⇒ 200− q1 − 120 +

1

2
q1 = 120− 1

2
q2

⇐⇒ −40− 1

2
q1 = −1

2
q2

⇐⇒ q2 = q1 + 80

Then at the firm’s optimum, the difference between the supplied quantities is q2 − q1 = 80.
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