
Economics 101: handout 2 Kyle Woodward

Mixed-strategy Nash equilibrium

Let’s open with the simultaneous-move variant of the sequential game from last week, shown in Figure 1. To

L2 R2

L1 4, 3 11, 0
R1 8, 0 10, 2

Figure 1: the sequential game from last week, recast as a simultaneous-move game

find Nash equilibrium, we consider what one agent does given what the other agent is doing. For example,
if agent 1 is playing L1, agent 2 prefers playing L2 to playing R2 as his payoff will be 3 rather than 0. So
that we remember this, we underline the 3 in the box corresponding to (L1,L2) and obtain Figure 2. Now, if

L2 R2

L1 4, 3 11, 0
R1 8, 0 10, 2

Figure 2: agent 2’s optimal action — contingent on agent 1 playing L1 — has been underlined

agent 1 is playing R1, agent 2 preferes playing R2 to playing L2 as his payoff will be 2 rather than 0; again,
we underline the chosen payoff and obtain Figure 3.

L2 R2

L1 4, 3 11, 0
R1 8, 0 10, 2

Figure 3: agent 2’s optimal action — contingent on agent 1 playing R1 — has been underlined

We take the same approach for agent 1: if agent 2 is playing L2, agent 1 prefers R1 to L1 as her payoff will
be 8 rather than 0. Similarly, if agent 2 is playing R2, agent 1 prefers L1 to R1 as her payoff will be 11 rather
than 10. Hence all the underlines together give us Figure 4

We know that any box with two underlines represents a Nash equilibrium outcome: each agent is doing as
well as they can given what the other agent is doing, so no one wants to change and the system is at rest.
However, here there is no such outcome! Does this mean that game theory has no predictions about this
game?

Indifference

Keep in mind that economics likes to think that it has answers/predictions about everything, so we’re going
to need some tools to figure out how to predict play in this case. Consider this: since there is no equilibrium
in single actions (what we call a pure-strategy Nash equilibrium, although if pure-strategy is not specified we’re
still talking about this case), agent 2 might as well randomly select his action. If he randomizes just right,
it is possible that agent 1 will be perfectly indifferent between playing L1 and R1; and if she is indifferent,
she is also willing to randomize. If she randomizes just right, it is possible that agent 2 will be perfectly
indifferent between playing L2 and R2, and hence agent 2 is willing to randomize, as we guessed.

How do we structure this? Suppose that agent 1 plays L1 with probability p1, and agent 2 plays L2 with
probability p2; this implies that agent 1 is playing R1 with probability (1−p1) and agent 2 is playing R2 with
probability (1− p2).1 We know that agent 2 must randomize so that agent 1 is indifferent between playing

1If this does not bring back memories of Econ 41 or Stats 10, the underlying math is simple enough. Suppose that agent 1
is playing L1 with probability p1 and R1 with probability q1. It is a fact that adding up all the probabilities in an outcome
space should result in 1; since here the only two possible outcomes are L1 and R1, it must be that p1 + q1 = 1, or q1 = 1− p1.
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L2 R2

L1 4, 3 11, 0
R1 8, 0 10, 2

Figure 4: agent 1’s optimal actions have been underlined

L1 and R1: agent 1 must receive identical expected utility from each outcome. Recalling our discussion of
expected utility,

E [u1 (L1)] = E [u1 (R1)]

⇐⇒ Pr (L2) (4) + Pr (R2) (11) = Pr (L2) (8) + Pr (R2) (10)

⇐⇒ p2(4) + (1− p2)(11) = p2(8) + (1− p2)(10)

⇐⇒ 1 = 5p2

⇐⇒ p2 =
1

5

Therefore if agent 2 plays L2 with probability 1/5, agent 1 is indifferent between playing L1 and R1.

We need to repeat the same exercise to see how agent 2 can be indifferent; remember that if agent 2 is not
indifferent, he is not willing to randomize, so we need to know how agent 1 randomizes over her strategies
to support agent 2’s randomization. Again,

E [u2 (L2)] = E [u2 (R2)]

⇐⇒ Pr (L1) (3) + Pr (R1) (0) = Pr (L1) (0) + Pr (R1) (2)

⇐⇒ p1(3) + (1− p1)(0) = p1(0) + (1− p1)(2)

⇐⇒ 5p1 = 2

⇐⇒ p1 =
2

5

Therefore if agent 1 plays L1 with probability 2/5, agent 2 is indifferent between playing L2 and R2.

Equilibrium

We can see then that if agent 1 plays [L1,R1] with probability [2/5, 3/5] and agent 2 plays [L2,R2] with
probability [1/5, 4/5] neither agent can be strictly better off by pursuing another strategy. Somewhat curiously,
neither agent has a strict incentive to play in exactly this fashion: since they are indifferent between actions,
they could just as well choose one or another. However, if they did so the other agent would be able to
improve their payoff by not randomizing, and we would be out of equilibrium.

This is a Nash equilibrium in mixed strategies, or a mixed-strategy Nash equilibrium (MSNE). This differs
conceptually from “regular” Nash equilibrium only in that we allow agents to randomize — or, mix — over
their available single actions — or, pure strategies. Together with pure-strategy Nash equilibria, it is good
to keep in mind the following result:

Theorem

Let N be the number of (pure-strategy) Nash equilibria of a two-player
game, and let M be the number of mixed-strategy Nash equilibria of the
same game. Then if N + M is finite, it is odd; that is, N + M = 1 is
possible, as is N + M = 3, but we cannot have N + M = 0 or N + M = 2.
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An example

Consider the simultaneous-move game of Figure 5. To find Nash equilibrium, we consider the following:

B2 S2

B1 4, 1 0, 0
S1 −1, 0, 2, 2

Figure 5: a two-player simultaneous-move game

• If agent 1 plays B1, agent 2 would rather play B2 than S2, since 1 > 0.

• If agent 1 plays S1, agent 2 would rather play S2 than B2, since 2 > 0.

• If agent 2 plays B2, agent 1 would rather play B1 than S1, since 4 > −1.

• If agent 2 plays S2, agent 2 would rather play S1 than B1, since 2 > 0.

Putting these together, we underline the payoffs corresponding to the chosen actions, shown in Figure 6. As

B2 S2

B1 4, 1 0, 0
S1 −1, 0, 2, 2

Figure 6: chosen payoffs have been underline

usual, any outcome with two underlines is a Nash equilibrium; we gently box these in Figure 7. In particular,
the Nash equilibrium strategies are (B1,B2) and (S1,S2), and the Nash equilibrium outcomes are (4, 1) and
(2, 2).

B2 S2

B1 4, 1 0, 0

S1 −1, 0, 2, 2

Figure 7: Nash equilibria (in pure strategies) correspond to the cells with two underlines

Mixed-strategy Nash equilibria

Now, in light of the theorem given above, we should look for mixed-strategy Nash equilibrium. Why? We
found two pure-strategy Nash equilibria; since the number of pure-strategy Nash equilibria plus the number
of mixed-strategy Nash equilibria must be odd, there is a mixed-strategy Nash equilibrium hiding out there
somewhere.

Let p1 be the probability with which agent 1 plays B1, and p2 be the probability with which agent 2 plays
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B2.2 Recall that agent 2’s randomization must keep agent 1 indifferent between playing B1 and S1; that is,

E [u1 (B1)] = E [u1 (S1)]

⇐⇒ p2(4) + (1− p2)(0) = p2(−1) + (1− p2)(2)

⇐⇒ 7p2 = 2

⇐⇒ p2 =
2

7

So if agent 2 plays B2 with probability 2/7, agent 1 is indifferent between playing B1 and S1.

Now, what probability must agent 1 assign to playing B1 in order for agent 2 to be indifferent between B2

and S2? Again,

E [u2 (B2)] = E [u2 (S2)]

⇐⇒ p1(1) + (1− p1)(0) = p1(0) + (1− p1)(2)

⇐⇒ 3p1 = 2

⇐⇒ p1 =
2

3

So if agent 1 plays B1 wth probability 2/3, agent 2 is indifferent between playing B2 and S2, and hence is
willing to randomize between the two.

Together, we see that agent 1 playing [B1,S1] with probability [2/3, 1/3] and agent 2 playing [B2,S2] with
probability [2/75/7] constitutes a mixed-strategy Nash equilibrium. Moreover, this is the only mixed-strategy
Nash equilibrium, since all of our algebra implied that there was only one probability per agent to keep the
opposite agent indifferent between actions. That is, if p2 6= 2/7, agent 1 is surely not indifferent between B1

and S1!

Pareto efficiency

We can see that both pure-strategy Nash equilibrium outcomes are Pareto efficient: we cannot make one
agent better off without harming another. Is this also true of the mixed-strategy Nash equilibrium we have
found?

Let’s consider two methods of computing the agents’ utilities in this mixed-strategy Nash equilibrium.

(a) Direct method. Agents are randomly selecting actions, and they are doing so independently. Hence if
agent 1 plays B1 with probability 2/3 and agent 2 plays B2 with probability 2/7, the probability of
outcome (B1,B2) is (2/3)(2/7) = 4/21. We can compute this for each possible outcome,

Pr (B1,B2) =

(
2

3

)(
2

7

)
Pr (B1,S2) =

(
2

3

)(
1− 2

7

)
=

4

21
=

10

21

Pr (S1,B2) =

(
1− 2

3

)(
2

7

)
Pr (S1,S2) =

(
1− 2

3

)(
1− 2

7

)
=

2

21
=

5

21

A useful algebra check of these probabilities is (4/21 + 10/21 + 2/21 + 5/21) = 21/21 = 1.

Helpfully, we can write these results in something that looks like a payoff matrix, shown in Figure 8.

2We might more generally say that pi is the probability with which agent i plays Bi.
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B2 S2

B1 4/21 10/21
S1 2/21 5/21

Figure 8: the probability of each outcome in MSNE

Computing each agent’s utility is a matter of computing the expected utility over possible outcomes.
In particular, for agent 1 we have

E [u1] = Pr (B1,B2)u1 (B1,B2) + Pr (B1,S2)u1 (B1,S2)

+ Pr (S1,B2)u1 (S1,B2) + Pr (S1,S2)u1 (S1,S2)

=
4

21
(4) +

10

21
(0) +

2

21
(−1) +

5

21
(2)

=
24

21
=

8

7

For agent 2, we find

E [u2] =
4

21
(1) +

10

21
(0) +

2

21
(0) +

5

21
(2)

=
14

21
=

2

3

Thus the expected utilities in this mixed-strategy Nash equilibrium are (8/7, 2/3).

(b) Shortcut. Remember now that each agent is indifferent between their possible actions; therefore they
receive the same payoff no matter which action they take. Since the agents’ randomizations are
independent, we know3

E [u1] = Pr (B1)E [u1 (B1)] + Pr (B2)E [u1 (S1)] .

But since E[u1(B1)] = E[u1(S1)], this implies

E [u1] = (Pr (B1) + Pr (B2))E [u1 (B1)] .

Now, since these probabilities must add to 1 we have

E [u1] = E [u1 (B1)] = E [u1 (S1)]

That is, to know agent 1’s expected payoff we need only compute the expected payoff from choosing
either pure action; the same logic will obviously hold for agent 2.

We can then compute — much more simply than the above —

E [u1] = E [u1 (B1)]

= Pr (B2)u1 (B1,B2) + Pr (S2)u1 (B1,S2)

=
2

7
(4) +

5

7
(0)

=
8

7

For agent 2,

E [u2] = E [u2 (B2)]

=
2

3
(1) +

1

3
(0)

=
2

3
3This is a little deeper in Econ 41 (and possibly Stats 10); if it rings a bell, it is the law of iterated expectations.
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These answers correspond exactly to the answers above!

Note that we could just as well have used, for example, E[u1] = E[u1(S1)] here and computed the same
thing; the answer would have been no different. We used B1 only because we needed to choose one or
the other.

We know then that the expected utilities in this equilibrium are (8/7, 2/3). Importantly, both pure-strategy
Nash equilibria — (4, 1) and (2, 2) in outcome space — Pareto dominate this outcome! Why is this? In this
equilibrium, there are sizable probabilities placed on undesirable outcomes such as (0, 0) and (−1, 0), since
agents are randomizing independently. If they have the power to randomize in a different way (more on this
later in the quarter) we might expect different outcomes.

In case you are wondering, yes, this does seem like an absurd prediction in this context. Not only do
agents need to follow this needlessly-complex randomization strategy (needless since there are pure-strategy
equilibria), but they are worse off than in the pure-strategy equilibria for doing so! All the same, this is an
equilibrium of the game. We are only looking to quantify which strategies imply that no agent is better off
doing something else, and this mixing approach satisfies the criterion.

Questions

Question 1: consider the version of the prisoner’s dilemma in Figure 9. Suppose that agent 1 plays C1 with

C2 D2

C1 −5,−4 0,−10
D1 −11, 0 −2,−1

Figure 9: prisoner’s dilemma for question 1

probability p1 and agent 2 plays C2 with probability p2.

(a) What must p1 be for agent 2 to be indifferent between C2 and D2?

(b) What must p2 be for agent 1 to be indifferent between C1 and D1?

(c) Recalling the laws of probability, what does this say about the existence of mixed-strategy Nash
equilibrium in this game?

(d) How many pure-strategy Nash equilibria are there in this game? Does this confirm or refute your
answer to (c)? (is it possible in this game that there is more than one p1 which leaves agent 2
indifferent between C2 and D2?)

(e) Is there a good intuitive reason for your answers to (c) and (d), in terms of the payoffs of the game?
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Question 2: consider the sequential game in Figure 10.

R1L1

1

R2

4, 7

L2

6, 2

2

R2

8, 5

L2

0, 0

2

1

Figure 10: the sequential game for question 2

(a) What is the subgame-perfect Nash equilibrium of this game?

(b) Render this game as a payoff matrix. (remember that agent 2 has 4 possible strategies)

(c) What are the Nash equilibria of this game?

(d) Are there any mixed-strategy Nash equilibria of this game?

Question 3 (hard): consider any two-player sequential game with two actions for each player and distinct
payoffs for each player across outcomes. How many subgame-perfect Nash equilibria are there? How many
Nash equilibria can there be? Can there exist mixed-strategy Nash equilibria? If so, are they “interesting”?
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