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Mixed-strategy Nash equilibrium

Let’s open with the simultaneous-move variant of the sequential game from last week, shown in Figure 1. To

Lo Ry
L, [ 43 [11,0
Ry | 8,0 | 10,2

Figure 1: the sequential game from last week, recast as a simultaneous-move game

find Nash equilibrium, we consider what one agent does given what the other agent is doing. For example,
if agent 1 is playing Li, agent 2 prefers playing Lo to playing Ry as his payoff will be 3 rather than 0. So
that we remember this, we underline the 3 in the box corresponding to (L1, Ls) and obtain Figure 2. Now, if

L [ 4,3
R, | 8,0 | 10,2

Figure 2: agent 2’s optimal action — contingent on agent 1 playing L; — has been underlined

agent 1 is playing R1, agent 2 preferes playing Ro to playing Lo as his payoff will be 2 rather than 0; again,
we underline the chosen payoff and obtain Figure 3.

L, [ 4,3
R, | 8,0 | 10,2

Figure 3: agent 2’s optimal action — contingent on agent 1 playing Ry — has been underlined

We take the same approach for agent 1: if agent 2 is playing Lo, agent 1 prefers Ry to L; as her payoff will
be 8 rather than 0. Similarly, if agent 2 is playing R, agent 1 prefers L; to R; as her payoff will be 11 rather
than 10. Hence all the underlines together give us Figure 4

We know that any box with two underlines represents a Nash equilibrium outcome: each agent is doing as
well as they can given what the other agent is doing, so no one wants to change and the system is at rest.
However, here there is no such outcome! Does this mean that game theory has no predictions about this
game?

Indifference

Keep in mind that economics likes to think that it has answers/predictions about everything, so we're going
to need some tools to figure out how to predict play in this case. Consider this: since there is no equilibrium
in single actions (what we call a pure-strategy Nash equilibrium, although if pure-strategy is not specified we're
still talking about this case), agent 2 might as well randomly select his action. If he randomizes just right,
it is possible that agent 1 will be perfectly indifferent between playing L; and Ry; and if she is indifferent,
she is also willing to randomize. If she randomizes just right, it is possible that agent 2 will be perfectly
indifferent between playing Lo and Re, and hence agent 2 is willing to randomize, as we guessed.

How do we structure this? Suppose that agent 1 plays L; with probability p;, and agent 2 plays Ly with
probability pe; this implies that agent 1 is playing R; with probability (1 —p;) and agent 2 is playing Ry with
probability (1 — ps).} We know that agent 2 must randomize so that agent 1 is indifferent between playing

LIf this does not bring back memories of Econ 41 or Stats 10, the underlying math is simple enough. Suppose that agent 1
is playing L with probability p; and R; with probability ¢1. It is a fact that adding up all the probabilities in an outcome
space should result in 1; since here the only two possible outcomes are L; and Ry, it must be that p1 +¢1 =1, 0or ¢1 =1 — p1.
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Lo Ra
Ll 473 £70
R, | 8,0 | 10,2

Figure 4: agent 1’s optimal actions have been underlined

L; and Ry: agent 1 must receive identical expected utility from each outcome. Recalling our discussion of
expected utility,

E[uy (L1)] = E [u1 (R1)]
— Pr(Ls) (4) + Pr (Rz) (11) = Pr (Ls) (8) + Pr (R2) (10)
— p2(4) + (1 = p2)(11) = p2(8) + (1 — p2)(10)
> 1=5py
— p2 = %

Therefore if agent 2 plays Lo with probability 1/5, agent 1 is indifferent between playing L; and Rj.

We need to repeat the same exercise to see how agent 2 can be indifferent; remember that if agent 2 is not
indifferent, he is not willing to randomize, so we need to know how agent 1 randomizes over her strategies
to support agent 2’s randomization. Again,

E [uz (L2)] = E [uz (R2)]
Pr(L1) (0) + Pr(R1) (2)

<— Pr(Ly)(3)+Pr(Ry) (0) =
— p1(3) + (1 = p1)(0) = p1(0) + (1 — p1)(2)
— 5p1 = 2
_ 2
— p1 = 5

Therefore if agent 1 plays L; with probability 2/5, agent 2 is indifferent between playing Lo and Re.

Equilibrium

We can see then that if agent 1 plays [L;, Ry] with probability [2/5,3/5] and agent 2 plays [Lo, Rg] with
probability [1/5,4/5] neither agent can be strictly better off by pursuing another strategy. Somewhat curiously,
neither agent has a strict incentive to play in exactly this fashion: since they are indifferent between actions,
they could just as well choose one or another. However, if they did so the other agent would be able to
improve their payoff by not randomizing, and we would be out of equilibrium.

This is a Nash equilibrium in mixed strategies, or a mized-strategy Nash equilibrium (MSNE). This differs
conceptually from “regular” Nash equilibrium only in that we allow agents to randomize — or, mix — over
their available single actions — or, pure strategies. Together with pure-strategy Nash equilibria, it is good
to keep in mind the following result:

Let N be the number of (pure-strategy) Nash equilibria of a two-player
game, and let M be the number of mixed-strategy Nash equilibria of the
same game. Then if N + M is finite, it is odd; that is, N + M = 1 is
possible, as is N + M = 3, but we cannot have N + M =0or N + M = 2.
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An example

Consider the simultaneous-move game of Figure 5. To find Nash equilibrium, we consider the following:

B, S
B, [ 4,1 0,0
S [ =10, | 2.2

Figure 5: a two-player simultaneous-move game

If agent 1 plays By, agent 2 would rather play Bs than So, since 1 > 0.

If agent 1 plays Sp, agent 2 would rather play Se than Bs, since 2 > 0.

If agent 2 plays Bs, agent 1 would rather play B; than Sq, since 4 > —1.

If agent 2 plays So, agent 2 would rather play S; than By, since 2 > 0.

Putting these together, we underline the payoffs corresponding to the chosen actions, shown in Figure 6. As

Bs So
By 4,1 0,0
Sl _1307 2)2

Figure 6: chosen payoffs have been underline

usual, any outcome with two underlines is a Nash equilibrium; we gently box these in Figure 7. In particular,
the Nash equilibrium strategies are (B1,Bz) and (S1,S2), and the Nash equilibrium outcomes are (4,1) and
(2,2).

B, Sy
Bi | [41] | 0,0
Si | —L0, | [22]

Figure 7: Nash equilibria (in pure strategies) correspond to the cells with two underlines

Mixed-strategy Nash equilibria

Now, in light of the theorem given above, we should look for mixed-strategy Nash equilibrium. Why? We
found two pure-strategy Nash equilibria; since the number of pure-strategy Nash equilibria plus the number
of mixed-strategy Nash equilibria must be odd, there is a mixed-strategy Nash equilibrium hiding out there
somewhere.

Let p; be the probability with which agent 1 plays B, and p, be the probability with which agent 2 plays
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Bs.? Recall that agent 2’s randomization must keep agent 1 indifferent between playing B, and S;; that is,

E [u1 (B1)] = E [u1 (S1)]

= p2(4) + (1 = p2)(0) = p2(—1) + (1 — p2)(2)
<~ Tpy =2

_ 2
<~ P2 = ?

So if agent 2 plays By with probability 2/7, agent 1 is indifferent between playing By and S.

Now, what probability must agent 1 assign to playing By in order for agent 2 to be indifferent between Bo
and S3?7 Again,

E [uz (B2)] = E [uz (S2)]

= p1(1) + (1 —p1)(0) = p1(0) + (1 — p1)(2)
= 3p1 =2

2
<~ pP1 = g

So if agent 1 plays By wth probability 2/3, agent 2 is indifferent between playing Bs and So, and hence is
willing to randomize between the two.

Together, we see that agent 1 playing [By,S;] with probability [2/3,1/3] and agent 2 playing [Bs, So] with
probability [2/75/7] constitutes a mixed-strategy Nash equilibrium. Moreover, this is the only mixed-strategy
Nash equilibrium, since all of our algebra implied that there was only one probability per agent to keep the
opposite agent indifferent between actions. That is, if ps # 2/7, agent 1 is surely not indifferent between B
and S;!

Pareto efficiency

We can see that both pure-strategy Nash equilibrium outcomes are Pareto efficient: we cannot make one
agent better off without harming another. Is this also true of the mixed-strategy Nash equilibrium we have
found?

Let’s consider two methods of computing the agents’ utilities in this mixed-strategy Nash equilibrium.
(a) Direct method. Agents are randomly selecting actions, and they are doing so independently. Hence if

agent 1 plays B; with probability 2/3 and agent 2 plays By with probability 2/7, the probability of
outcome (B1,Bz2) is (2/3)(2/7) = 4/21. We can compute this for each possible outcome,

rom-()Q) o= ()0

_ 4 _ 10
T2 21
2\ /2 2 2
Pr (Sl7B2) = <1 - 3> <7) Pr (Sl,sg) = <1 - 3> (1 - 7)
_ 2 _5
21 21

A useful algebra check of these probabilities is (4/21 4+ 10/21 4+ 2/21 4+ 5/21) = 21/21 = 1.

Helpfully, we can write these results in something that looks like a payoff matrix, shown in Figure 8.

2We might more generally say that p; is the probability with which agent ¢ plays B;.

OCTOBER 17, 2012 4



EcoNoMIcs 101: HANDOUT 2 KYLE WOODWARD

B, S,
B, [ 4/21 [10/21
s, [ 2/21 | 5/21

Figure 8: the probability of each outcome in MSNE

Computing each agent’s utility is a matter of computing the expected utility over possible outcomes.
In particular, for agent 1 we have
E [ul] = PI‘ (Bl, B2) (751 (Bl, B2) + PI‘ (Bl, SQ) (51 (Bl, SQ)
+ Pr (Sl, BQ) w1 (Sl, Bg) + Pr (Sl, Sg) U1 (Sl, SQ)

4 10 2 5
= —(4)+— Z(=1) + = (2
51+ 57O+ 57 (=) + 57 (2)
_24_8
21 7
For agent 2, we find
4 10 2 5
E =—1)+ = — —(2
[ua] = (1) + 57 (0) + 5-(0) + 5-(2)
_ 42
213

Thus the expected utilities in this mixed-strategy Nash equilibrium are (8/7,2/3).

Shortcut. Remember now that each agent is indifferent between their possible actions; therefore they
receive the same payoff no matter which action they take. Since the agents’ randomizations are
independent, we know?

E[u1] = Pr(B1) E[u; (B1)] + Pr(Ba) E [ug (S1)].
But since Efu1 (By)] = Efus (S1)], this implies
E[u1] = (Pr (B1) + Pr (B2)) E [uy (B1)].
Now, since these probabilities must add to 1 we have
Efu1] = Efus (By)] = E[uy (51)]

That is, to know agent 1’s expected payoff we need only compute the expected payoff from choosing
either pure action; the same logic will obviously hold for agent 2.

We can then compute — much more simply than the above —
Efur] = E[us (By)]

= Pr (Bg) Uq (Bl, Bz) + Pr (SQ) U1 (Bl, SQ)
2 5

= §(4) + ;(0)

8

7

For agent 2,
E [ug] = E [uz (B2)]

= (1) +350)
_ 2
"3

3This is a little deeper in Econ 41 (and possibly Stats 10); if it rings a bell, it is the law of iterated expectations.
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These answers correspond exactly to the answers above!

Note that we could just as well have used, for example, E[u;] = E[u(S1)] here and computed the same
thing; the answer would have been no different. We used B; only because we needed to choose one or
the other.

We know then that the expected utilities in this equilibrium are (8/7,2/3). Importantly, both pure-strategy
Nash equilibria — (4, 1) and (2, 2) in outcome space — Pareto dominate this outcome! Why is this? In this
equilibrium, there are sizable probabilities placed on undesirable outcomes such as (0,0) and (—1,0), since
agents are randomizing independently. If they have the power to randomize in a different way (more on this
later in the quarter) we might expect different outcomes.

In case you are wondering, yes, this does seem like an absurd prediction in this context. Not only do
agents need to follow this needlessly-complex randomization strategy (needless since there are pure-strategy
equilibria), but they are worse off than in the pure-strategy equilibria for doing so! All the same, this is an
equilibrium of the game. We are only looking to quantify which strategies imply that no agent is better off
doing something else, and this mixing approach satisfies the criterion.

Questions

Question 1: consider the version of the prisoner’s dilemma in Figure 9. Suppose that agent 1 plays C; with

CZ D2
C: [=5,-4 [0,-10
D, [ —15,0 | —2,-1

Figure 9: prisoner’s dilemma for question 1

probability p; and agent 2 plays Co with probability po.

(a) What must p; be for agent 2 to be indifferent between Cy and Do?
(b) What must ps be for agent 1 to be indifferent between C; and D47

(¢) Recalling the laws of probability, what does this say about the existence of mixed-strategy Nash
equilibrium in this game?

(d) How many pure-strategy Nash equilibria are there in this game? Does this confirm or refute your
answer to (c)? (is it possible in this game that there is more than one p; which leaves agent 2

indifferent between Cy and D2 ?)

(e) Is there a good intuitive reason for your answers to (¢) and (d), in terms of the payoffs of the game?
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Question 2: consider the sequential game in Figure 10.

6,2 4,7 0,0 8,5

Figure 10: the sequential game for question 2

(a) What is the subgame-perfect Nash equilibrium of this game?
(b) Render this game as a payoff matrix. (remember that agent 2 has 4 possible strategies)
(¢) What are the Nash equilibria of this game?

(d) Are there any mixed-strategy Nash equilibria of this game?

Question 3 (hard): consider any two-player sequential game with two actions for each player and distinct
payoffs for each player across outcomes. How many subgame-perfect Nash equilibria are there? How many
Nash equilibria can there be? Can there exist mixed-strategy Nash equilibria? If so, are they “interesting”?
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